ECE 376 - Homework \#11

z-Transforms and Digital Filters. Due Friday, April 21st
Please email to jacob.glower@ ndsu.edu, or submit as a hard copy, or submit on BlackBoard

1) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{5(s+2)}{\left(s^{2}+4 s+30\right)}\right) X
$$

a) What is the differential equation relating X and Y ?

Cross multiply

$$
\left(s^{2}+4 s+30\right) Y=5(s+2) X
$$

'sY' means 'the derivative of y '

$$
y^{\prime \prime}+4 y^{\prime}+30 y=5 x^{\prime}+10 x
$$

b) Find $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=6+5 \sin (4 t)
$$

Use superposition
$\mathrm{x}(\mathrm{t})=6$

$$
\mathrm{s}=0
$$

$$
X=6
$$

$$
Y=\left(\frac{5(s+2)}{\left(s^{2}+4 s+30\right)}\right)_{s=0} \cdot(6)
$$

$$
Y=2
$$

$$
\begin{array}{ll}
\mathrm{x}(\mathrm{t})=5 \sin (4 \mathrm{t}) & \\
& \mathrm{s}=\mathrm{j} 4 \\
\mathrm{X}=0-\mathrm{j} 5 & \text { real = cosine, -imag }=\text { sine } \\
Y=\left(\frac{5(s+2)}{\left(s^{2}+4 s+30\right)}\right)_{s=j 4} \cdot(0-j 5) & \\
Y=1.3274-j 5.0885 & \\
y(t)=1.3274 \cos (4 t)+5.0885 \sin (4 t) & \text { real }=\text { cosine, -imag }=\text { sine }
\end{array}
$$

The total answer is DC + AC

$$
y(t)=2+1.3274 \cos (4 t)+5.0885 \sin (4 t)
$$

2) Assume X and Y are related by the following transfer function

$$
Y=\left(\frac{0.01(z+1)}{(z-0.96)(z-0.9)}\right) X
$$

a) What is the difference equation relating X and Y ?

Cross multiply

$$
\left(z^{2}-1.86 z+0.864\right) Y=0.01(z+1) X
$$

note that zX means $\mathrm{x}(\mathrm{k}+1)$

$$
y(k+2)-1.86 y(k+1)+0.864 y(k)=0.01(x(k+1)+x(k))
$$

or doing a time shift (change of variable)

$$
y(k)-1.86 y(k-1)+0.864 y(k-2)=0.01(x(k-1)+x(k-2))
$$

either answer is valid.
b) Find $y(t)$ assuming a sampling rate of $T=0.01$ second

$$
x(t)=6+5 \sin (4 t)
$$

Use superposition
$x(t)=6$
$\mathrm{s}=0$
$\mathrm{z}=\exp (\mathrm{sT})=1$
$X=6$
$Y=\left(\frac{0.01(z+1)}{(z-0.96)(z-0.9)}\right)_{z=1} \cdot(6)$
$Y=30$
$x(t)=5 \sin (4 t)$
$s=j 4$
$\mathrm{z}=\exp (\mathrm{sT})=1 \angle 0.04=0.9992+\mathrm{j} 0.0400$
$\mathrm{X}=0-\mathrm{j} 5$
$Y=\left(\frac{0.01(z+1)}{(z-0.96)(z-0.9)}\right)_{z=1 \angle 0.04} \cdot(0-j 5)$
$Y=-15.2944-j 6.6882$
$y(t)=-15.2944 \cos (4 t)+6.6882 \sin (4 t)$
The total answer is DC + AC

$$
y(t)=30-15.2944 \cos (4 t)+6.6882 \sin (4 t)
$$

Problem 3) Assume $G(s)$ is a low-pass filter with real poles:

$$
G(s)=\left(\frac{100}{(s+4)(s+5)(s+6)}\right)
$$

3) Design a digital filter, $G(z)$, which has approximately the same gain vs. frequency as $G(s)$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

$$
\begin{array}{ll}
s=-4 & z=e^{s T}=0.9608 \\
s=-5 & z=e^{s T}=0.9512 \\
s=-6 & z=e^{s T}=0.9418
\end{array}
$$

So, $G(z)$ is of the form

$$
G(z)=\left(\frac{k}{(z-0.9608)(z-0.9512)(z-0.9418)}\right)
$$

To find k , match the DC gain

$$
G(s=0)=\left(\frac{100}{(s+4)(s+5)(s+6)}\right)_{s=0}=0.8333
$$

Pick ' k ' so that $\mathrm{G}(\mathrm{z})$ has the same DC gain

$$
\begin{aligned}
& G(z=1)=\left(\frac{k}{(z-0.9608)(z-0.9512)(z-0.9418)}\right)_{z=1}=0.8333 \\
& k=0.0000928
\end{aligned}
$$

and

$$
G(z)=\left(\frac{0.0000928}{(z-0.9608)(z-0.9512)(z-0.9418)}\right)
$$

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

```
>> w = [0:0.01:50]';
>> s = j*W;
>> T = 0.01;
>> z = exp(s*T);
>> Gs = 100 ./ ( (s+4).* (s+5).*(s+6) );
>>Gz = 0.0000928 ./ ( (z-0.9608).*(z-0.9512).*(z-0.9418) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r');
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
```


$\mathrm{G}(\mathrm{s})$ (blue) and $\mathrm{G}(\mathrm{z})$ (red)

The gain vs. frequency is the same: it's the same filter

Problem 4) Assume $\mathrm{G}(\mathrm{s})$ is the following band-pass filter:

$$
G(s)=\left(\frac{30 s}{(s+2+j 15)(s+2-j 15)}\right)
$$

Design a digital filter, $\mathrm{G}(\mathrm{z})$, which has approximately the same gain vs. frequency as $\mathrm{G}(\mathrm{s})$. Assume a sampling rate of $\mathrm{T}=0.01$ second.

$$
\begin{array}{ll}
s=0 & z=e^{s T}=1 \\
s=-2+j 15 & z=e^{s T}=0.9692+j 0.1465 \\
s=-2-j 15 & z=e^{s T}=0.9692-j 0.1465
\end{array}
$$

So, the form of $G(z)$ is

$$
G(z)=\left(\frac{k(z-1)}{(z-0.9692+j 0.1465)(z-0.9692-j 0.1465)}\right)
$$

To find k , match the gain somewhere. The DC gain is zero, so pick somewhere else (like $\mathrm{s}=\mathrm{j} 15$)

$$
\begin{aligned}
& |G(s=j 15)|=\left|\left(\frac{30 s}{(s+2+j 15)(s+2-j 15)}\right)_{s=j 15}\right|=7.4834 \\
& \left|G\left(z=e^{s T}\right)\right|=\left|\left(\frac{k(z-1)}{(z-0.9692+j 0.1465)(z-0.9692-j 0.1465)}\right)_{z=1 \angle 0.15}\right|=7.4834 \\
& k=0.2932 \\
& G(z)=\left(\frac{0.2932(z-1)}{(z-0.9692+j 0.1465)(z-0.9692-j 0.1465)}\right)
\end{aligned}
$$

Plot the gain vs. frequency for both filters from 0 to $50 \mathrm{rad} / \mathrm{sec}$.

```
>> w = [0:0.01:50]';
>> s = j*w;
>> T = 0.01;
>> z = exp(s*T);
>>Gs = 30*s./ ( (s+2+j*15).*(s+2-j*15) );
>>Gz = 0.2932*(z-1) ./ ( (z-0.9692+j*0.1465).*(z-0.9692-j*0.1465) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r');
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');
```


$\mathrm{G}(\mathrm{s})$ (blue) \& $\mathrm{G}(\mathrm{z})$ (red)

The two filters have the same gain vs. frequency: they're the same filter.

Problem 5) Write a C program to implement the digital filter, $\mathrm{G}(\mathrm{z})$

$$
Y=\left(\frac{0.2932(z-1)}{(z-0.9692+j 0.1465)(z-0.9692-j 0.1465)}\right) X
$$

Multiply out

$$
Y=\left(\frac{0.2932(z-1)}{\left(z^{2}-1.9384 z+0.9608\right)}\right) X
$$

Cross multiply

$$
\begin{aligned}
& \left(z^{2}-1.9384 z+0.9608\right) Y=0.2932(z-1) X \\
& y(k+2)-1.9384 y(k+1)+0.9608 y(k)=0.2932(x(k+1)-x(k))
\end{aligned}
$$

Do a time shift (or a change of variable)

$$
y(k)-1.9384 y(k-1)+0.9608 y(k-2)=0.2932(x(k-1)-x(k-2))
$$

Solve for $y(k)$

$$
y(k)=1.9384 y(k-1)-0.9608 y(k-2)+0.2932(x(k-1)-x(k-2))
$$

That's essentially your program

```
while(1) {
    x2 = x1;
    x1 = x0;
    x0 = A2D_Read(0);
    y2 = y1;
    y1 = y0;
    y0 = 1.9384*y1 - 0.9608*y2 + 0.2932*(x1 - x2);
    D2A(y0);
    Wait_ms(10);
    }
```


Filters \& Range Measurement

In Matlab, create data to represent ultrasonic range sensor readings at a distance of 100 mm :

```
mm = 100 + 3*randn(1000,1);
```

6) For the raw data (mm), determine

- The mean
- The standard deviation
- The 90% confidence interval for the next reading.

```
>> x = 100 + 3*randn(1000,1);
>> k = [1:1000]';
>> Xx = mean(x);
>> Xx = mean(x)
Xx = 100.0820
>> Sx = std(x)
Sx = 2.9861
>> X2 = Xx + 1.64*Sx
X2 = 104.9791
>> X0 = Xx - 1.64*Sx
X0 = 95.1848
>> plot(k,x,'b',k,0*k+X2,'m--',k,0*k+X0,'m--')
>> xlabel('Sample Number');
>> ylabel('mm');
```


7) Filter the data with a FIR filter (the average of the last five data points)

$$
Y=\left(\frac{1}{5}\right)\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\frac{1}{z^{4}}\right) X
$$

For the filtered data (y), determine

- The mean of y
- The standard deviation of y
- The 90% confidence interval for the next value of y

Also plot the filtered data, $\mathrm{y}(\mathrm{k})$

```
>> x = 100 + 3*randn (1000,1);
>> y = 0*x;
>> y(1:4) = 100;
>> for k=5:1000
        y(k) = mean(x(k-4:k));
        end
>> k = [1:1000]';
>> Xy = mean(y)
Xy = 99.8276
>> Sy = std(y)
Sy = 1.3865
>> Y0 = XY - 1.64*Sy
YO = 97.5538
>> Y2 = XY + 1.64*Sy
Y2 = 102.1015
>> plot(k,y,'b',k,0*k+Y2,'m--',k,0*k+Y0,'m--')
>> xlabel('Sample Number');
>> ylabel('Distance (mm)')
```


FIR Filterd Data \& 90\% Confidence Interval
8) Filter the data with the following low-pass filter:

$$
\begin{array}{ll}
Y=\left(\frac{8}{s^{2}+4 s+8}\right) X & \text { s-plane, poles at } \mathrm{s}=-2+/-\mathrm{j} 2 \\
Y=\left(\frac{0.0008}{z^{2}-1.9600 z+0.9608}\right) X & \text { same filter in the z-plane with T }=10 \mathrm{~ms}
\end{array}
$$

In Matlab:

```
>> x = 100 + 3*randn(1000,1);
>> y = 0*x;
>> y(1:2) = 100;
>> for k=3:1000
        y(k) = 1.9600*y(k-1)-0.9608*Y(k-2)+0.0008*x(k-2);
    end
>> k = [1:1000]';
>> Xy = mean(y)
Xy = 100.0203
>> Sy = std(y)
Sy = 0.2647
>> Y0 = Xy - 1.64*Sy
YO = 99.5862
>> Y2 = XY + 1.64*SY
y2 = 100.4544
>> plot(k,y,'b',k,0*k+Y2,'m--',k,0*k+Y0,'m--')
>> xlabel('Sample Number');
>> ylabel('Distance (mm)')
```


Filtered Output with an IIR Filter \& 90\% Confidence Interval

Summary:

- Taking the average of five data points is a filter. It does reduce the noise and the standard deviation.
- Running the data through a 2 nd-order IIR filter works much better, however.
- You could reduce the noise even further using higher-order IIR filters

If you're going to use just a few terms, an IIR filter works much better than taking the averag

- Analysis and design is a little bit harder though

Filter	Mean	Std	90% Confidence Interval
None	100.08	2.99	95.18 .. 104.98
FIR	99.83	1.39	$97.55 . .102 .10$
IIR	100.02	0.26	$99.59 . .100 .45$

Filter Gain: No Filter (blue), FIR Filter (red), IIR Filter (pink)

