ECE 376 - Test #1: Name

Spring 2023

- 1) **Digital Inputs.** Design a circuit which outputs
 - 0V when R < 1500 Ohms
 - 5V when R > 1700 Ohms

Assume

- R1 = 800 + 100*(your birth month) + (your birth date).
- May 14th, for example, gives R1 = 1314 Ohms

- 2) Digital Outputs: Design a circuit which allows your PIC to drive a 100W LED at N mA
 - N = 800 + 100*(your birth month) + (your birth date)
 - N = 1314 mA for May 14th, for example

Assume a 20W LED has the following characteristics

- Vf = 10V @ 2000mA
- 2,000 Lumens @ 2000mA

Assume a 6144 NPN transistor

- Vbe = 700mV
- Vce(sat) = 360mV
- Current gain = $\beta = 200$

Ic (mA) 800 + 100*Month + Day	Lumens Light output when on	Rb	Rc

- 3) Assembler: Determine the contents of the W, A, and B after each operation. Assume
 - A and B are 8-bit registers (spots in memory).
 - Default is decimal

	W	А	В
Start:	13	Birth Month (112)	Birth Date (131)
incf A,W			
decf B,W			
addlw 5			
addwf A,F			
subwf B,W			
movf A,W			
movff A,B			
andlw 7			
btg A,1			
movwf B			

4) Assembler & Timing:

- a) Determine the number of clocks the following assembler subroutine takes to execute.
 - Assume MONTH and DAY be your birth month and day.
- b) Modify this routine (change A, B, and C) so that it takes 2,500,000 clocks (250ms) to execute
 - +/- 50,000 clocks

A	Month birth month 112	Day birth date 131	N number of clocks Wait takes
150			
A	В	С	N 2,500,000 +/- 50,000

```
Wait:
           150 (A)
    movlw
              CNT2
    movwf
     nop
     nop
     nop
     nop
W2:
         movlw MONTH movwf CNT1
                           (B)
         nop
         nop
W1:
              movlw DAY (C)
                        CNT0
              movwf
W0:
                   nop
                   nop
                   nop
                   decfsz CNTO, F
                   goto
                         WΟ
              decfsz CNT1,F
              goto W1
         decfsz
                   CNT2,F
         goto W2
    return
```

- **5**) **Assember & Flow Charts.** Write an assembler program to turn your PIC processor into random count-down timer
 - When RB0 is pressed, PORTC counts from 1..12 really fast
 - When RB0 is released, PORTC then contains a random number from 1..12
 - PORTC then counts down every 250ms
 - When PORTC reaches zero, it then goes back to the beginning and waits for RB0.

Assume a 250ms wait routine exists (call Wait)

Bonus: (Due Monday 2pm): Program and demonstrate problem #5 on yor PIC board