ECE 376-Test \#1: Name

Spring 2023

1) Digital Inputs. Design a circuit which outputs

- 0 V when $\mathrm{R}<1500$ Ohms
- 5 V when $\mathrm{R}>1700 \mathrm{Ohms}$

Assume

- $\mathrm{R} 1=800+100^{*}$ (your birth month) + (your birth date).
- May 14th, for example, gives R1 = 1314 Ohms

2) Digital Outputs: Design a circuit which allows your PIC to drive a 100W LED at N mA

- $\mathrm{N}=800+100^{*}$ (your birth month) + (your birth date)
- $\mathrm{N}=1314 \mathrm{~mA}$ for May 14th, for example

Assume a 20W LED has the following characteristics

- $\mathrm{Vf}=10 \mathrm{~V} @ 2000 \mathrm{~mA}$
- 2,000 Lumens @ 2000mA

Assume a 6144 NPN transistor

- $\mathrm{Vbe}=700 \mathrm{mV}$
- $\operatorname{Vce}(\mathrm{sat})=360 \mathrm{mV}$
- Current gain $=\beta=200$

Ic (mA) $800+100^{*}$ Month + Day	Lumens Light output when on	Rb	Rc

3) Assembler: Determine the contents of the W, A, and B after each operation. Assume

- A and B are 8-bit registers (spots in memory).
- Default is decimal

	W	A	B
Start:	13	Birth Month (1..12)	Birth Date (1..31)
incf A,W			
decf B,W			
addlw 5			
addwf A,F			
subwf B,W			
movf A,W			
movff A, B			
btg A, 1			
movwf B			

4) Assembler \& Timing:

a) Determine the number of clocks the following assembler subroutine takes to execute.

- Assume MONTH and DAY be your birth month and day.
b) Modify this routine (change A, B, and C) so that it takes $2,500,000$ clocks (250ms) to execute
- +/- 50,000 clocks

A	Month birth month $1 . .12$	Day birth date $1 . .31$	N number of clocks Wait takes
150			
A	B	C	N
			$2,500,000+/-50,000$

Wait:

movlw	150 (A)	
movwf	CNT2	
nop		
movlw	MONTH	(B)
movwf	CNT1	
nop		
nop		

W1:

$$
\begin{array}{ll}
\text { movlw } & \text { DAY (C) } \\
\text { movwf } & \text { CNTO }
\end{array}
$$

W0:

```
        nop
        nop
        nop
        decfsz CNTO,F
        goto w0
            decfsz CNT1,F
            goto W1
```

 decfsz CNT2,F
 goto W2
 return
 5) Assember \& Flow Charts. Write an assembler program to turn your PIC processor into random count-down timer

- When RB0 is pressed, PORTC counts from $1 . .12$ really fast
- When RB0 is released, PORTC then contains a random number from $1 . .12$
- PORTC then counts down every 250 ms
- When PORTC reaches zero, it then goes back to the beginning and waits for RB0.

Assume a 250 ms wait routine exists (call Wait)

Bonus: (Due Monday 2pm): Program and demonstrate problem \#5 on yor PIC board

