ECE 376 - Test \#2: Name

C-Programming on a PIC Processor

Open book, open notes. Calculators and Matlab permitted.
Individual effort (giving or receivinghelp from others of from Chegg not allowed).

1) C Coding (25 points)

A thermistor is connected to the analog input (RA0) so that the voltage goes up as temperature goes up. Write a C program that turns on lights based upon voltage:

- $\mathrm{A} / \mathrm{D}>4.5 \mathrm{~V}$ Red LED blinks on for 500 ms , then off for 500 ms (RC1)
- $4 \mathrm{~V}<\mathrm{A} / \mathrm{D}<4.5 \mathrm{~V}$ Red LED turns on $(\mathrm{RC} 2=1)$
- $3 \mathrm{~V}<\mathrm{A} / \mathrm{D}<4 \mathrm{~V}$ Yellow LED turns on $(\mathrm{RC} 1=1)$
- A2D $<3 \mathrm{~V}$: \quad Green LED turns on $(\mathrm{RC} 0=1)$

Assume the A / D is initialized and subrouting A2D_Read(x) is avilable.

```
void main(void)
    unsigned int mV;
    unsigned int A2D;
    ADCON1 = 0x0F
    A2D_Init();
    TRISB = 0xFF;
    TRISC = 0;
    while(1) {
        A2D = A2D_Read(0);
        mV = A2D * 4.88;
        if(mV > 450) {
            RCO = 0;
            RC1 = 0;
            RC2 = !RC2;
            }
        elseif(mV > 400)
            PORTC = 4;
        elseif(mV > 300)
            PORTC = 2;
        else
            PORTC = 1;
        Wait_ms(500);
        }
    }
```


2) Morse Code: Bottom Up Programming (25 points)

a) Write a subroutines $\operatorname{Dash}()$ and $\operatorname{Dot}()$ which output a single dash and dot for Morse code when called:

- Dash(): RC0 goes high for 300 ms the low for 100 ms
- $\operatorname{Dot}():$ RC0 goes hight for 100 ms then low for 100 ms

```
void Dash(void) {
    RCO = 1;
    Wait_ms(300);
    RCO = 0;
    Wait_ms(100);
    }
void Dot(void) {
    RCO = 1;
    Wait_ms(100);
    RCO = 0;
    Wait_ms(100);
    }
```

b) Write a subroutine which outputs Morse code for numbers $\{0,1,2\}$ when numbers $\{0,1,2\}$ are passed to it:

3) Analog Inputs (25 points)

A light sensor has a resistance vs. lux relationship of

$$
R_{1}=\left(\frac{10,000}{(L u x)^{0.6}}\right) \Omega
$$

Determine the following assuming

- The A/D reading is 513, and
- $\mathrm{R} 2=800+100$ (your birth month) + (your birth date)

R2 $800+100^{*} \mathrm{~m}+$ day	V1	A/D Reading	R1	Lux
1,314	$\mathbf{2 . 5 0 7 3 V}$	513	$\mathbf{1 3 2 1 . 7}$	$\mathbf{2 9 . 1 5 8}$

$$
\begin{aligned}
& V_{1}=\left(\frac{513}{1023}\right) 5 V=2.5073 V \\
& V_{1}=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) 5 V \\
& R_{1}=\left(\frac{V_{1}}{5-V_{1}}\right) 1314 \Omega=1321.729 \Omega \\
& R_{1}=1321.729 \Omega=\left(\frac{10,000}{(L u x)^{0.6}}\right) \Omega \\
& L u x=29.158
\end{aligned}
$$

4) chi-squared test (10 points)

Hector has been recording temperatures in Fargo since 1942 (81 years). For the past 27 years, 16 years where in the hottest 33%, six in the middle 33%, and five in the coldest 33%.
Use a chi-squared test to determine if the weather in Fargo is changing (probability of rejecting the null hypothesis: each interval is equally likely)

\# Wins wins after 16 games	p binomial distribution	np expected results	N actual results	Chi-Squared
Hottest 33%	$1 / 3$	9	16	5.44
Middle 33%	$1 / 3$	9	6	1
Coldest 33%	$1 / 3$	9	5	1.78

$$
\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)
$$

Sample size $=3$, meaning 2 degrees of freedom
A chi-squared score of 8.22 corresponds to a probability of about 98%

I can reject the null hypothesis with a confidence level of $\mathbf{9 8 \%}$
There is a $\mathbf{9 8 \%}$ chance that the yearly average temperature in Fargo is changing.

Chi-Squared Table Probability of rejecting the null hypothesis										
dof	99\%	95\%	90\%	80\%	60\%	40\%	20\%	10\%	5\%	1\%
1	6.64	3.84	2.71	1.65	0.71	0.28	0.06	0.02	0	0
2	9.21	5.99	4.61	3.22	1.83	1.02	0.45	0.21	0.05	0.01
3	11.35	7.82	6.25	4.64	2.95	1.87	1.01	0.58	0.22	0.07
4	13.28	9.49	7.78	5.99	4.05	2.75	1.65	1.06	0.48	0.21
5	15.09	11.07	9.24	7.29	5.13	3.66	2.34	1.61	0.83	0.41
6	16.81	12.59	10.64	8.55	6.21	4.57	3.07	2.20	1.63	0.87
7	18.47	14.06	12.02	9.80	7.28	5.49	3.82	2.83	2.17	1.24

5) t-Tests (15 points)

Hector airport has been monitoring the weather in Fargo since 1942.

Population	mean	standard deviation	sample size
A: $1996-2022$	42.7559 F	2.1936 F	27
B: $1942-1968$	40.5330 F	1.7303 F	27

Use a student t -test to determine the probability that population A has a higher mean than population B .

- What is the probablity that Fargo is getting warmer?
- Note: population question. What is the chance that Fargo is getting warmer?

Create a new variable, $\mathrm{W}=\mathrm{A}-\mathrm{B}$

$$
\begin{aligned}
& \bar{x}_{w}=\bar{x}_{a}-\bar{x}_{b}=2.2229 \\
& s_{w}=\sqrt{\frac{s_{a}^{2}}{27}+\frac{s_{b}^{2}}{27}}=0.5377
\end{aligned}
$$

Find the t -score

$$
t=\left(\frac{\bar{x}_{w}}{s_{w}}\right)=4.1342
$$

Convert this to a probability using a t -table with 26 degrees of freedom

$$
\mathrm{p}=0.99984
$$

From the data, it is $\mathbf{9 9 . 9 8 4 \%}$ certain that the weather in Fargo has changed since 1942

Student t-Table area of tail dof $\backslash \mathrm{p}$														0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62													
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6													
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92													
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61													
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87													
6	0.72	0.91	1.13	1.44	1.94	2.45	3.14	3.71	5.21	5.96													
7	0.71	0.90	1.12	1.41	1.89	2.36	3.00	3.50	4.78	5.41													
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.09	3.29													

