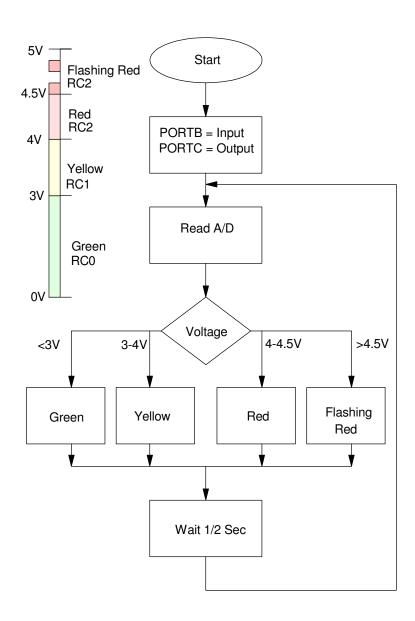
ECE 376 - Test #2: Name

C-Programming on a PIC Processor

Open book, open notes. Calculators and Matlab permitted. Individual effort (giving or receivinghelp from others of from Chegg not allowed).


1) C Coding (25 points)

A thermistor is connected to the analog input (RA0) so that the voltage goes up as temperature goes up. Write a C program that turns on lights based upon voltage:

- A/D > 4.5V Red LED blinks on for 500ms, then off for 500ms (RC1)
- 4V < A/D < 4.5V Red LED turns on (RC2 = 1)
- 3V < A/D < 4V Yellow LED turns on (RC1 = 1)
- A2D < 3V: Green LED turns on (RC0 = 1)

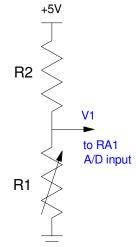
Assume the A/D is initialized and subrouting A2D_Read(x) is avilable.

```
void main(void)
  ADCON1 = 0x0F
  A2D_Init();
```


2) Morse Code: Bottom Up Programming (25 points	s)			
a) Write a subroutines Dash() and Dot() which output a single and dot for Morse code when called:	e dash	300ms	100ms	100ms 100ms
 Dash(): RC0 goes high for 300ms the low for 100ms Dot(): RC0 goes hight for 100ms then low for 100ms 		Dash()		Dot()
void Dash(void) {	void Do	ot(void) {	
b) Write a subroutine which outputs Morse code for numbers to it:	s {0, 1, 2} wh	nen numl	pers {0, 1,	2} are passe
0			2	

void Morse(unsigned char X)

3) Analog Inputs (25 points)


A light sensor has a resistance vs. lux relationship of

$$R_1 = \left(\frac{10,000}{(Lux)^{0.6}}\right) \Omega$$

Determine the following assuming

- The A/D reading is 513, and
- R2 = 800 + 100(your birth month) + (your birth date)

R2 800 + 100*mo + day	V1	A/D Reading	R1	Lux
		513		

4) chi-squared test (10 points)

dof

1

2

3

4

5

6

7

18.47

14.06

12.02

9.80

Hector has been recording temperatures in Fargo since 1942 (81 years). For the past 27 years, 16 years where in the hottest 33%, six in the middle 33%, and five in the coldest 33%.

Use a chi-squared test to determine if the weather in Fargo is changing (probability of rejecting the null hypothesis: each interval is equally likely)

# Wins wins after 16 games	p binomial distribution	np expected results	N actual results	Chi-Squared
Hottest 33%	1/3	9	16	
Middle 33%	1/3	9	6	
Coldest 33%	1/3	9	5	
			Total	

Chi-Squared Table Probability of rejecting the null hypothesis

7.28

99%	95%	90%	80%	60%	40%	20%	10%	5%	1%
6.64	3.84	2.71	1.65	0.71	0.28	0.06	0.02	0	0
9.21	5.99	4.61	3.22	1.83	1.02	0.45	0.21	0.05	0.01
11.35	7.82	6.25	4.64	2.95	1.87	1.01	0.58	0.22	0.07
13.28	9.49	7.78	5.99	4.05	2.75	1.65	1.06	0.48	0.21
15.09	11.07	9.24	7.29	5.13	3.66	2.34	1.61	0.83	0.41
16.81	12.59	10.64	8.55	6.21	4.57	3.07	2.20	1.63	0.87

5.49

3.82

2.83

2.17

1.24

5) t-Tests (15 points)

Hector airport has been monitoring the weather in Fargo since 1942.

Population	mean	standard deviation	sample size
A: 1996 - 2022	42.7559F	2.1936F	27
B: 1942-1968	40.5330F	1.7303F	27

Use a student t-test to determine the probability that population A has a higher mean than population B.

- What is the probablity that Fargo is getting warmer?
- Note: population question. What is the chance that Fargo is getting warmer?

Student t-Table										
	area of tail									
dof \ p	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87
6	0.72	0.91	1.13	1.44	1.94	2.45	3.14	3.71	5.21	5.96
7	0.71	0.90	1.12	1.41	1.89	2.36	3.00	3.50	4.78	5.41
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29