ECE 376 - Test #3: Name _____

Spring 2023

1a) Single Interrupt. The following C code sets up a Timer2 interrupt to output a square wave on RC0. Determine the frequency that appears on pin RC0.

T2CON = 163 = 0xA3 = 10100111 (A = 5, C = 16) PR2 = 163 (B = 164) N = A*B*C = 13,120f = **10,000,000** / (**2***N) = **381.098Hz**

b..e) If the following sections of code are deleted, what frequency will you see on pin RCO?

Section of Code	Frequency on RC0 if this section is deleted		
// Global variable unsigned int COUNT	code doesn't compile		
void interrupt IntServe(void) {			
RC0 = !RC0;	b) OHz (RCO is never toggled)		
TMR2IF = 0;	c) 100kHz (N = 50, stuck in the interrupt)		
<pre>} void main(void) { TRISC = 0; ADCON1 = 0x0F;</pre>	code doesn't compile		
T2CON = 163; PR2 = 163;	d) unknown. A,B,C could be anything		
<pre>TMR2ON = 1; TMR2IE = 1; TMR2IP = 1; PEIE = 1; GIE = 1;</pre>	e) OHz. Interrupts don't happen		
<pre>while(1) { RC1 = !RC1; } }</pre>	code doesn't compile		

2) Multiple Interrupts: Give the interrupt service routine and interrupt initialization code so that the PIC outputs a

- M Hz square wave on RC0 using Timer0 interrupts (M = your birth month, 1..12)
- D Hz square wave on RC1 using Timer1 interrupts (D = your birth date, 1..31), and
- X Hz square wave on RC2 using Timer3 interrupts (X = 800 + 100*M + D. May 14th gives 1314Hz)

Interrupt Initialization

	Timer0 M Hz square wave on RC0	Timer1 D Hz square wave on RC1	Timer3 XHz square wave on RC2
frequency (Hz)	5 Hz	14 Hz	1314 Hz
# Clocks between interrupts	1,000,000	357,142	3805
PS	16 (affects code below)	8	1

Interrupt Service Routines

Timer0	Timer1	Timer3
M Hz square wave on RC0	D Hz square wave on RC1	XHz on RC2
<pre>if(TMR0IF) { TMR0 = -62500; RC0 = !RC0; TMR0IF = 0; }</pre>	<pre>if (TMR1IF) { TMR1 = -44643; RC1 = !RC1; TMR1IF = 0; } </pre>	<pre>if (TMR3IF) { TMR3 = -3805; RC2 = !RC2; TMR3IF = 0; }</pre>

3) Electronic Chickadee: Write a C program which uses interrupts to play the song of a chickadee (type of bird) when you press RB0:

- When RB0 is pressed (INT0 interrupt)
- RC0 plays 1570Hz for 500ms, the
- RC0 plays 1219Hz for 300ms

Let

- INT0 detect the button press
- Timer0 set the duration of the note (500ms then 300ms)
- Timer1 sets the frequency of the note (1570Hz then 1219Hz)

a) Interrupt Initialization: (affects the interrupt service routine)

INT0 rising or falling edge	PS0 prescalar for Timer0 (1,2,4,8,,256)	PS1 prescalar for Timer1 (1,2,4,8)
rising	PS = 256	PS = 1

b) Write the interrupt service Routines

INTO	Timer0	Timer1
trigger on RB0	play for 100ms	play XHz
<pre>if (INTOIF) { N = 2; TMR0 = -19531; INTOIF = 0; }</pre>	<pre>if(TMROIF) { if(N) N = N - 1; if(N == 1) TMR0=-11718; TMR0IF = 0; }</pre>	<pre>if(TMR1IF) { if(N == 2) TMR1 = -3184; else TMR1 = -4101; if(N) RC0 = !RC0; else RC0 = 0; TMR1IF = 0; } </pre>

4) Filter Analysis: Assume X and Y are related by the following transfer function

$$Y = \left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right) X = \left(\frac{2z-1.8}{z^2-1.3z+0.40}\right) X$$

a) What is the difference equation that relates X and Y?

$$y(k+2) - 1.3y(k+1) + 0.40y(k) = 2x(k+1) - 1.8x(k)$$

b) Find y(t) assuming

$$x(t) = 6 + 2\cos(250t) + 5\sin(250t)$$

Assume a sampling rate of T us where

• $T = 800 + 100^{*}$ (your birth month) + (your birth date) micro-seconds

T = 1314us

 $y(t) = 12 + 0.682\cos(250t) + 17.972\sin(250t)$

s = 0
z = exp(sT) = 1
$$Y = \left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right)_{z=1} \cdot (6) = 12$$

AC:

s = j250
z = exp(sT) = 0.947 + j0.323

$$Y = \left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right)_{z=0.947+j0.323} \cdot (2-j5) = 0.682 - j17.972$$

$$y(t) = 0.682 \cos(250t) + 17.972 \sin(250t)$$