ECE 376-Test \#3: Name

Spring 2023
1a) Single Interrupt. The following C code sets up a Timer2 interrupt to output a square wave on RC 0 . Determine the frequency that appears on pin RC0.

```
T2CON = 163 = 0xA3 = 10100111 ( }\textrm{A}=5,\textrm{C}=16
PR2 = 163 (B = 164)
N = A*B*C = 13,120
f=10,000,000 / (2*N) = 381.098Hz
```

b..e) If the following sections of code are deleted, what frequency will you see on pin RC0?

Section of Code	Frequency on RC0 if this section is deleted
// Global variable unsigned int COUNT void interrupt IntServe (void)	code doesn't compile
RCO = !RC0;	b) OHz (RCO is never toggled)
TMR2IF = 0;	C) 100 kHz ($\mathrm{N}=50$, stuck in the interrupt)
```} void main(void) { TRISC = 0; ADCON1 = 0x0F;```	code doesn't compile
$\begin{aligned} & \text { T2CON }=163 ; \\ & \text { PR2 }=163 ; \end{aligned}$	d) unknown. A, B, C could be anything
$\begin{aligned} & \text { TMR2ON }=1 ; \\ & \text { TMR2IE }=1 ; \\ & \text { TMR2IP }=1 ; \\ & \text { PEIE }=1 ; \\ & \text { GIE }=1 ; \end{aligned}$	e) OHz . Interrupts don't happen
while(1) \{   RC1 = !RC1;   \}	code doesn't compile

2) Multiple Interrupts: Give the interrupt service routine and interrupt initialization code so that the PIC outputs a

- M Hz square wave on RC0 using Timer0 interrupts ( $\mathrm{M}=$ your birth month, 1..12)
- D Hz square wave on RC1 using Timer1 interrupts ( $\mathrm{D}=$ your birth date, 1..31) , and
- X Hz square wave on RC 2 using Timer3 interrupts ( $\mathrm{X}=800+100 * \mathrm{M}+\mathrm{D}$. May 14th gives 1314 Hz )

Interrupt Initialization

	Timer0   M Hz square wave on RC0	Timer1   D Hz square wave on RC1	Timer3   XHz square wave on RC2
frequency (Hz)	$\mathbf{5 ~ H z}$	14 Hz	$\mathbf{1 3 1 4 ~ H z}$
\# Clocks between   interrupts	$\mathbf{1 , 0 0 0 , 0 0 0}$	357,142	3805
PS	16   (affects code below)	$\mathbf{8}$	$\mathbf{1}$

Interrupt Service Routines

Timer0   M Hz square wave on RC 0	Timer 1   D Hz square wave on RC1	$\begin{gathered} \text { Timer3 } \\ \text { XHz on RC2 } \end{gathered}$
```if(TMR0IF) { TMRO = -62500; RCO = !RCO; TMROIF = 0; }```	```if (TMR1IF) { TMR1 = -44643; RC1 = !RC1; TMR1IF = 0; }```	```if (TMR3IF) { TMR3 = -3805; RC2 = !RC2; TMR3IF = 0; }```

3) Electronic Chickadee: Write a C program which uses interrupts to play the song of a chickadee (type of bird) when you press RB0:

- When RB0 is pressed (INT0 interrupt)
- RC0 plays 1570 Hz for 500 ms , the
- RC0 plays 1219 Hz for 300 ms

Let

- INT0 detect the button press
- Timer0 set the duration of the note (500 ms then 300 ms)
- Timer1 sets the frequency of the note $(1570 \mathrm{~Hz}$ then 1219 Hz$)$
a) Interrupt Initialization: (affects the interrupt service routine)

INT0 rising or falling edge	PS0 prescalar for Timer0 $(1,2,4,8, \ldots, 256)$	PS1 prescalar for Timer1 $(1,2,4,8)$
rising	$\mathbf{P S}=\mathbf{2 5 6}$	$\mathbf{P S}=\mathbf{1}$

b) Write the interrupt service Routines

INT0 trigger on RB0	Timer0 play for 100 ms	Timer1 play XHz
```if (INTOIF) { N = 2; TMRO = -19531; INTOIF = 0; }```	```if(TMROIF) { if(N) N = N - 1; if(N == 1) TMR0=-11718; TMROIF = 0; }```	```if(TMR1IF) { if(N == 2) TMR1 = -3184; else TMR1 = -4101; if(N) RCO = !RCO; else RCO = 0; TMR1IF = 0; }```

4) Filter Analysis: Assume $X$ and $Y$ are related by the following transfer function

$$
Y=\left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right) X=\left(\frac{2 z-1.8}{z^{2}-1.3 z+0.40}\right) X
$$

a) What is the difference equation that relates X and Y ?

$$
y(k+2)-1.3 y(k+1)+0.40 y(k)=2 x(k+1)-1.8 x(k)
$$

b) Find $y(t)$ assuming

$$
x(t)=6+2 \cos (250 t)+5 \sin (250 t)
$$

Assume a sampling rate of T us where

- $\mathrm{T}=800+100 *$ (your birth month) + (your birth date) micro-seconds
$\mathrm{T}=1314 \mathrm{us}$
$y(t)=12+0.682 \cos (250 t)+17.972 \sin (250 t)$

DC:

$$
\begin{aligned}
& \mathrm{s}=0 \\
& \mathrm{z}=\exp (\mathrm{sT})=1 \\
& Y=\left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right)_{z=1} \cdot(6)=12
\end{aligned}
$$

AC:

$$
\begin{aligned}
& \mathrm{s}=\mathrm{j} 250 \\
& \mathrm{z}=\exp (\mathrm{sT})=0.947+\mathrm{j} 0.323 \\
& Y=\left(\frac{2(z-0.9)}{(z-0.8)(z-0.5)}\right)_{z=0.947+j 0.323} \cdot(2-j 5)=0.682-j 17.972 \\
& y(t)=0.682 \cos (250 t)+17.972 \sin (250 t)
\end{aligned}
$$

