ECE 376 - Homework \#9

Timer 0/1/2/3 Interrupts - Due Wednesday, April 3rd

1) Write a C routine using Timer0 interrupts to measure time to 100 ns . Using this routine, determine how long a the following operations in C take:
a) Integer operations
```
int A, B, C;
A = 5;
B = 7;
C = 2*A + 3*B + 4;
```

b) Floating Point Operations

```
float A, B, C;
A = 3.14159;
B = 2.71718;
C = 2.1*A + 3.7*B + 4.16;
```

c) The time it takes you to press and release RB0 ten times

```
TRISB = 0xFF;
```

```
for(i=0; i<10; i++) { // start
```

for(i=0; i<10; i++) { // start
while(!RB0);
while(!RB0);
while(RB0);
while(RB0);
} // end

```
    } // end
```

2) Write a C routine using Timer0 / Timer1 / Tirme 2 / Timer3 interrupts to play 4 notes at the same time when you press button RB0.. RB3 at the same time (each note plays if its input button is pressed)

Input Pin	RB0	RB1	RB2	RB3
Output Pin	RC0	RC1	RC2	RC3
Note	F 2	G 2	A 2	B 2
Frequency (Hz)	87.307 Hz	97.999 Hz	110.000 Hz	123.471 Hz
Interrupt	Timer0	Timer1	Timer2	Timer3

Three-Phase Sine Wave

Write a program to output the positive votlage for a 3-phase sine wave using Timer interrupts

- Timer2 interrupt triggers every 1 ms and sets pins RC0 (phase A), RC1 (B), and RC2 (C)
- When Timer2 triggers, it sets up a Timer0/1/3 interrupt $\mathrm{nA} / \mathrm{nB} / \mathrm{nC}$ clocks in the future
- Timer0 interrupt then clears RC0 (setting the pulse width of phase A)
- Timer1 interrupt then clears RC1 (setting the pulse width of phase B)
- Timer3 interrupt then clears RC2 (setting the pulse width of phase C)
- The pulse width is determined by $\mathrm{nA} / \mathrm{nB} / \mathrm{nC}$
- $100=1 \%$
- $9900=99 \%$
- The main routine is responsible for setting the values of NA, NB, and NC

3) Give a flow chart for this program

- There should be five flow charts (one for each interrupt and one for the main routine)

4) Write the corresponding C code
5) Verify the interrupts are working

- If $\mathrm{nA}=1000(10 \%)$, you read 0.50 V on RC 0 with multimeter (or 10% on an oscilloscope)
- If $n B=2500(25 \%)$, you read 1.25 V on RC1
- If $\mathrm{nC}=8000(80 \%)$ you read 4.00 V on RC 2
- Timer2 kicks in every 1.00 ms

6) Demo: Demonstrate a 3-phase rectified sine wave with a period of 3 seconds

- Phase A cycles from 0% to 100% then back to 0%
- Phase B lags phase A by 120 degrees
- Phase C lags phase A by 240 degrees

