ECE 376 - Homework #1

PIC Background.

Please submit as a hard copy, submit on BlackBoard, or email

Problem	Answer
 How many clocks does it take to write the LCD display? Check Homework #9 solutions for Spring 2023 	6.2007ms
2) A PIC's output is limited to 25mA. Assuming V2 is 5V, what is the smallest resistance youcan connect to the output? (how small can R3 be?)	200 Ohms
A PIC can measure voltage to 4.88mV. To give an idea of how small thi	s is
3) What is the smallest change in R2 a PIC can measure if $R2 = 2000$ Ohms nominally?	8.32 Ohms
 How much does R2 have to change from 2000 Ohms for V1 to change by 4.88mV? 	
 4) Assume R2 is a thermistor. What temperature is it if R2 = 2000 Ohms? How much does the temperature have to change for V1 to change by 4.88mV? 	0.085C
A PIC can measure time to 100ns. To give an idea of how small this is	
5) The average NFL quarterback can throw a football 87 km/h. Fow far does the football travel in 100ns?	2.416um
 6) Assume for the 555 timer R1 = 1k, R2 = 2k, C = 0.1uF What frequency does the 555 timer output on pin #3? 	2885.39 Hz
7) What is the smallest change in frequency a PIC can detect?	0.83Hz
• i.e. how much does the frequency have to change for the period to change by 100ns?	
8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume $R2 = 10k$ Ohms (nominally). How much does R2 have to change for the period to change by 100ns?	0.72 Ohms
• i.e. What is the resolution of this circuit when used as an Ohm-meter?	
 9) Replace R2 with a thermistor which reads 2k Ohms nominally. How much does the temperature have to change for the period to increase by 100ns? i.e. what is the resolution in degrees C? 	0.0074C

Problem #1 to #3

2) A PIC's output is limited to 25mA. Assuming V2 is 5V, what is the smallest resistance youcan connect to the output? (how small can R3 be?)

$$R = \left(\frac{5V}{25mA}\right) = 200\Omega$$

3) What is the smallest change in R2 a PIC can measure if R2 = 2000 Ohms nominally?

• How much does R2 have to change from 2000 Ohms for V1 to change by 4.88mV?

If R2 = 2000 Ohms

$$V_1 = \left(\frac{R_2}{R_2 + R_1}\right) 5V = 1.887V$$

If V1 is 4.88mV more, then

$$V_1 + 4.88mV = 1.89167V = \left(\frac{R_2}{R_2 + 3300}\right)5V$$
$$R_2 = 2008.32V$$

The change in R2 required to produce a 4.88mV change in V1 is 8.32 Ohms

- 4) Assume R2 is a thermistor.
 - What temperature is it if R2 = 2000 Ohms?
 - How much does the temperature have to change for V1 to change by 4.88mV?

•
$$R_2 = 1000 \cdot \exp\left(\frac{3905}{T+273} - \frac{3905}{298}\right) \Omega$$

2000 Ohms corresponds to a temperature of

T = 10.02897C

2008.32 Ohms corresponds to a temperature of

T = 9.94383C

The difference is -0.08514C

A PIC can detect a change in temperature of 0.085C

5) The average NFL quarterback can throw a football 87 km/h. Fow far does the football travel in 100ns?

$$d = v \cdot t$$

$$d = 87 \left(\frac{km}{h}\right) \left(\frac{1000m}{km}\right) \left(\frac{1h}{3600s}\right) \cdot 100ns = 2.416\mu m$$

An average NFL quarterback's pass travels 2.4 micons in one clock

Astable 555 Timer: Problems 5-8 The square wave at the Output has a period of $T=(R_1+2R_2)\cdot C\cdot \ln(2)$ seconds

6) Assume for the 555 timer

- R1 = 1k, R2 = 2k, C = 0.1uF
- What frequency does the 555 timer output on pin #3?

 $T = (R_1 + 2R_2) \cdot C \cdot \ln(2)$ $T = 346.6 \mu s$ $f = \frac{1}{T} = 2885.3901 Hz$

- 7) What is the smallest change in frequency a PIC can detect?
 - i.e. how much does the frequency have to change for the period to change by 100ns?

$$f_2 = \frac{1}{T + 100ns} = 2884.5578Hz$$
$$\delta f = f_1 - f_2 = 0.8323Hz$$

8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume R2 = 2000 Ohms (nominally). How much does R2 have to change for the period to change by 100ns?

i.e. What is the resolution of this circuit when used as an Ohm-meter?

$$T + 100ns = (R_1 + 2R_2) \cdot C \cdot \ln(2)$$
$$R_2 = 2000.7213\Omega$$
$$\delta R = 0.72135\Omega$$

9) Replace R2 with a thermistor which reads 2k Ohms nominally. How much does the temperature have to change for the period to increase by 100ns? i.e. what is the resolution in degrees C?

 $P = 1000 \text{ avg} \begin{pmatrix} 3905 & 3905 \end{pmatrix} O$

$$R_2 = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right) \Omega$$

2000 Ohms corresponds to a temperature of

$$T = 10.02897C$$

2000.7213 Ohms corresponds to a temperature of

T = 10.0216C

with a difference of 0.0074C