ECE 376 - Homework \#1

PIC Background.
Please submit as a hard copy, submit on BlackBoard, or email

Problem	Answer
1) How many clocks does it take to write the LCD display? - Check Homework \#9 solutions for Spring 2023	$\mathbf{6 . 2 0 0 7 m s}$
2) A PIC's output is limited to 25 mA . Assuming V2 is 5 V , what is the smallest resistance youcan connect to the output? (how small can R3 be?)	200 Ohms
A PIC can measure voltage to 4.88 mV . To give an idea of how small this is....	
3) What is the smallest change in R2 a PIC can measure if R2 $=2000$ Ohms nominally? - How much does R2 have to change from 2000 Ohms for V1 to change by 4.88 mV ?	8.32 Ohms
4) Assume $R 2$ is a thermistor. - What temperature is it if $\mathrm{R} 2=2000$ Ohms? - How much does the temperature have to change for V1 to change by 4.88 mV ?	0.085C
A PIC can measure time to 100ns. To give an idea of how small this is....	
5) The average NFL quarterback can throw a football $87 \mathrm{~km} / \mathrm{h}$. Fow far does the football travel in 100 ns ?	2.416um
6) Assume for the 555 timer - $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=2 \mathrm{k}, \mathrm{C}=0.1 \mathrm{uF}$ - What frequency does the 555 timer output on pin \#3?	2885.39 Hz
7) What is the smallest change in frequency a PIC can detect? - i.e. how much does the frequency have to change for the period to change by 100 ns ?	0.83 Hz
8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume R2 = 10k Ohms (nominally). How much does R2 have to change for the period to change by 100 ns ? - i.e. What is the resolution of this circuit when used as an Ohm-meter?	0.72 Ohms
9) Replace R2 with a thermistor which reads 2 k Ohms nominally. How much does the temperature have to change for the period to increase by 100 ns ? - i.e. what is the resolution in degrees C ?	0.0074C

2) A PIC's output is limited to 25 mA . Assuming V2 is 5 V , what is the smallest resistance youcan connect to the output? (how small can R3 be?)

$$
R=\left(\frac{5 V}{25 m A}\right)=200 \Omega
$$

3) What is the smallest change in R 2 a PIC can measure if $\mathrm{R} 2=2000$ Ohms nominally?

- How much does R2 have to change from 2000 Ohms for V1 to change by 4.88 mV ?

If R2 $=2000 \mathrm{Ohms}$

$$
V_{1}=\left(\frac{R_{2}}{R_{2}+R_{1}}\right) 5 V=1.887 V
$$

If V 1 is 4.88 mV more, then

$$
\begin{aligned}
& V_{1}+4.88 m V=1.89167 V=\left(\frac{R_{2}}{R_{2}+3300}\right) 5 V \\
& R_{2}=2008.32 \mathrm{~V}
\end{aligned}
$$

The change in R 2 required to produce a 4.88 mV change in V 1 is 8.32 Ohms
4) Assume R2 is a thermistor.

- What temperature is it if $\mathrm{R} 2=2000$ Ohms?
- How much does the temperature have to change for V1 to change by 4.88 mV ?
- $R_{2}=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega$

2000 Ohms corresponds to a temperature of

$$
\mathrm{T}=10.02897 \mathrm{C}
$$

2008.32 Ohms corresponds to a temperature of

$$
\mathrm{T}=9.94383 \mathrm{C}
$$

The difference is -0.08514 C
A PIC can detect a change in temperature of 0.085 C
5) The average NFL quarterback can throw a football $87 \mathrm{~km} / \mathrm{h}$. Fow far does the football travel in 100ns?

$$
\begin{aligned}
& d=v \cdot t \\
& d=87\left(\frac{k m}{h}\right)\left(\frac{1000 m}{k m}\right)\left(\frac{1 h}{3600 s}\right) \cdot 100 n s=2.416 \mu m
\end{aligned}
$$

An average NFL quarterback's pass travels 2.4 micons in one clock

Astable 555 Timer: Problems 5-8
The square wave at the Output has a period of $T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2)$ seconds
6) Assume for the 555 timer

- $\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=2 \mathrm{k}, \mathrm{C}=0.1 \mathrm{uF}$
- What frequency does the 555 timer output on pin \#3?

$$
\begin{aligned}
& T=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2) \\
& T=346.6 \mu s \\
& f=\frac{1}{T}=2885.3901 H z
\end{aligned}
$$

7) What is the smallest change in frequency a PIC can detect?

- i.e. how much does the frequency have to change for the period to change by 100 ns ?

$$
\begin{aligned}
& f_{2}=\frac{1}{T+100 n s}=2884.5578 \mathrm{~Hz} \\
& \delta f=f_{1}-f_{2}=0.8323 \mathrm{~Hz}
\end{aligned}
$$

8) With this circuit, you can build an Ohm-meter (replace R2 with the resistance to be measured.) Assume R2 $=2000$ Ohms (nominally). How much does R2 have to change for the period to change by 100ns?
i.e. What is the resolution of this circuit when used as an Ohm-meter?

$$
\begin{aligned}
& T+100 n s=\left(R_{1}+2 R_{2}\right) \cdot C \cdot \ln (2) \\
& R_{2}=2000.7213 \Omega \\
& \delta R=0.72135 \Omega
\end{aligned}
$$

9) Replace R2 with a thermistor which reads 2 k Ohms nominally. How much does the temperature have to change for the period to increase by 100 ns ?
i.e. what is the resolution in degrees C ?

$$
R_{2}=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

2000 Ohms corresponds to a temperature of

$$
\mathrm{T}=10.02897 \mathrm{C}
$$

2000.7213 Ohms corresponds to a temperature of

$$
\mathrm{T}=10.0216 \mathrm{C}
$$

with a difference of 0.0074 C

