
ECE 376 - Homework #3
Binary Inputs, Binary Outputs, & LEDs - Due Monday, January 29th

Binary Inputs

Assume a thermistor has a resistance-temperature relationship of

R = 1000 ⋅ exp
3905

T+273
− 3905

298

Ω

1) Design a circuit which outputs

0V when T < 10C

5V when T > 10C

Assume a voltge divider with a 1k resistor. At 10C,

R = 2002.817 Ohms

Vin = 3.3349V

As temperature goes up

R goes down

Vin goes down

Vout goes up

Connect to the minus input (negative correlation)

Vp

Vm

Vout

+5V

0V

MCP602

5V

1k

R

Vin

5V

0V

10C

3.3349V

3.3349V

5V

coldhot

0V

2) Design a circuit which outputs

0V when T < 10C

5V when T > 15C

This is a Schmitt trigger. Assume a voltage divider with a 1k resistor:

At 10C,

R = 2002.817 Ohms

Vin = 3.3349V

Vout goes low

At 15C,

R = 1576.1749 Ohms

Vin = 3.0591V

Vout goes high

Von < Voff

Connect to the minus input

Von = 3.0591V

set the offset to 3.0591V

Slope = gain

gain =

5V−0V

3.3349V−3.0591V

 = 18.13

set the resistor ratio to 18.13

+

-

Vp

Vm

Y

+5V

0V

MCP602

5V

1k

R

Vin

5V

0V

3.0591V

10k 181.3k

10k 181.3k

10V

3.3349V
15C
3.0591V

3) Design a circuit which outputs

5V when 10C < T < 15C

0V otherwise

Option #1: Use two comparitors (problem #1)

RB0: T > 10C

RB1: T > 15C

In software, implement the logic

RC0 = RB0 ⋅ RB1

Main:

btfsc PORTB,1

goto Clear

btfss PORTB,0

goto Clear

Set:

bsf PORTC,0

goto Main

Clear:

bcf PORTC,0

goto Main

Vp

Vm

+5V

0V

MCP602

5V

1k

R

Vin

Vp

Vm

+5V

0V

MCP602 RB0

RB1

RC0

T>15C

T>10C

10C<T<15C

PIC

3.335V

3.059V

Option #2: Get a little tricky with diodes implementing a min function

Y1: T > 10C

Y2: T < 15C

Y = min(Y1, Y2)

+

-

Vp

Vm

+5V

0V

MCP602

5V

1k

R

Vin

+

-

Vp

Vm

+5V

0V

MCP602

+5V

1k

3.3349V

3.0591V

T > 10C

T < 15C

Y

10C < T < 15C

A

B

min(A, B)

Binary Outputs

4) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off)

and 10mA (on). Assume the specifications for the LEDs are:

Color Vf @ 20mA mcd @ 20mA

red 2.0V 10,000

green 3.2V 10,000

blue 3.2V 10,000

Since this is less than 5V and 25mA, connect directly to a PIC using a resistor

Rr =

5V−2.0V

10mA

 = 300Ω

Rg =

5V−3.2V

10mA

 = 180Ω

Rb =

5V−3.2V

10mA

 = 180Ω

RC2 RC1 RC0

Rr

300

Rg

180
Rb

180

1.9V 3.2V 3.2V

10mA 10mA 10mA

5) Design a circuit which allows your PIC board to turn on and off a 5W LED at 250mA. The specs for

the LED are:

Vf = 6.0-7.0V

Current = 700mA

500-600 Lumens (equivalent to a 60W light bulb).
https://www.ebay.com/itm/1W-3W-5W-10W-50W-100W-High-power-SMD-Chip-LED-COB-White-Blue-Red-Light-Beads/124011607823

Assume you have a 6144 NPN transistor:

max continuous current = 3A

current gain = 300

Vbe = 0.7V, Vce(sat) = 0.2V

Since this is more than a PIC can output, use an NPN transistor as a buffer (switch)

Step 1: Set the current to 250mA

Assume a 12V power supply

Rc =

12V−6.5V−0.2V

250mA

 = 21.2Ω

Pick Rc to saturate the transistor

βIb > Ic

300Ib > 250mA

Ib > 0.833mA

Let Ib = 4.3mA (arbitrary: more than 0.833mA, less than 25mA)

Rb =

5V−0.7V

4.3mA

 = 1kΩ

+12V

Rc

5W

LED

6144

Rb = 1k

NPN

250mA

PIC

21.2

Ib = 4.3mA

5V = on

0V = off

Timing:

6) Write a program which outputs the music note E4 (329.63 Hz)

Verify the frequency of the square wave you generate

(Pano Tuner app on you cell phone works well for this)

First, calculate the number of clocks between toggles

N =

10,000,000

2⋅Hz

 = 15, 168.5223

Come up with a wait look that burns 15,168 clocks

N = 10*A*B + 5*A + 9 = 15,168

A = 7, B = 216 (N = 15,164, 0.03% low)

#include <p18f4620.inc>

; Variables

CNT0 EQU 1

CNT1 EQU 2

; Program

org 0x800

call Init

Loop:

incf PORTC,F

call Wait

goto Loop

; --- Subroutines ---

Init:

clrf TRISA

clrf TRISB

clrf TRISC

clrf TRISD

clrf TRISE

movlw 0x0F

movwf ADCON1 ;everyone is binary

return

Wait:

movlw 7 ; A

movwf CNT1

W1:

 movlw 216 ; B

 movwf CNT0

W0:

 nop ; 10 clocks

 nop

 nop

 nop

 nop

 nop

 nop

 decfsz CNT0, F

 goto W0

 decfsz CNT1, F

 goto W1

return

Result = 330.2Hz

+0.17% high

Lab: PIC Stoplight

7) Give the flow chart for a program to turn your PIC board into a stoplight

PORTC = East/West

PORTD = North/South

7 6 5 4 3 2 1 0

PORTC (E/W) - - R R Y Y G G

PORTD (N/S) - - R R Y Y G G

The stoplight cycles every 14 seconds

Duration (seconds) E/W N/S

5s G R

2s Y R

5s R G

2s R Y

Counting mod 14

Count E/W N/S

0 0x03 (green) 0x30 (red)

5 0x0C (yellow) 0x30 (red)

7 0x30 (red) 0x03 (green)

12 0x30 (red) 0x0C (yellow)

PORTB = Input

Start

PORTA/C/D = Output

PORTA

PORTA += 1

mod 14

=0 =5 =7 =12

other

E/W = Green

N/S = red

E/W = Yellow

N/S = red
E/W = red

N/S = green
E/W = red

N/S = yellow

PORTA = 0

Wait 1 second

8) Write the corresponding assembler code

Include a routine which waits

; --- Stoplight.asm ----

#include <p18f4620.inc>

; Variables

SEC equ 0

CNT0 equ 1

CNT1 equ 2

CNT2 equ 3

CNT3 equ 4

org 0x800

call Init

L1:

call Count

call Lights

call Wait

goto L1

Init:

 clrf TRISA

clrf TRISB

 clrf TRISC

clrf TRISD

 movlw 0x0F

movwf ADCON1

clrf SEC

return

Count:

incf SEC,F

movlw 14

cpfseq SEC

goto L2

clrf SEC

L2:

movff SEC,PORTA

return

Lights:

movlw 0

cpfseq SEC

goto L3

movlw 0x03

movwf PORTC

movlw 0x30

movwf PORTD

return

L3:

movlw 5

cpfseq SEC

goto L4

movlw 0x0C

movwf PORTC

movlw 0x30

movwf PORTD

return

L4:

movlw 7

cpfseq SEC

goto L5

movlw 0x30

movwf PORTC

movlw 0x03

movwf PORTD

return

L5:

movlw 12

cpfseq SEC

goto L6

movlw 0x30

movwf PORTC

movlw 0x0C

movwf PORTD

return

L6:

return

; One second wait routine

; N = 10ABC + 5AB + 5A + 4

; N = 10,050,504

Wait:

movlw 100 ; A

movwf CNT2

W2:

movlw 100 ; B

movwf CNT1

W1:

movlw 100

movwf CNT0 ; C

W0:

nop

nop

nop

nop

nop

nop

nop

decfsz CNT0,F

goto W0

decfsz CNT1,F

goto W1

decfsz CNT2,F

goto W2

 return

end

9) Test your code.

Compile and program your PIC board

Verify each button's operation

Step #1: Test the wait routine

org 0x800

call Init

L1:

incf PORTC,F

; call Count

; call Lights

call Wait

goto L1

After fixing the wait routine, PORTC counts every second

Step #2: Test the count mod-12 routine

org 0x800

call Init

L1:

call Count

; call Lights

call Wait

goto L1

After fixing more bugs, PORTA counts 0..13 (mod 12)

Step #3: Test the lights routine

org 0x800

call Init

L1:

call Count

call Lights

call Wait

goto L1

After a few more bugs, the lights work correctly

10) (20 points) Demonstration

In-person of with a video

Stoplight Code:

PORTA = Count (currently at 3 seconds)

PORTC = E/W (currently green light)

PORTD = N/S (currently red light)

