## ECE 376 - Homework \#3

Binary Inputs, Binary Outputs, \& LEDs - Due Monday, January 29th

## Binary Inputs

Assume a thermistor has a resistance-temperature relationship of

$$
R=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

1) Design a circuit which outputs

- 0 V when $\mathrm{T}<10 \mathrm{C}$
- 5 V when $\mathrm{T}>10 \mathrm{C}$

Assume a voltge divider with a 1 k resistor. At 10C,

- $\mathrm{R}=2002.817$ Ohms
- $\operatorname{Vin}=3.3349 \mathrm{~V}$

As temperature goes up

- R goes down
- Vin goes down
- Vout goes up

Connect to the minus input (negative correlation)

2) Design a circuit which outputs

- 0 V when $\mathrm{T}<10 \mathrm{C}$
- 5 V when $\mathrm{T}>15 \mathrm{C}$

This is a Schmitt trigger. Assume a voltage divider with a 1 k resistor:
At 10C,

- $\mathrm{R}=2002.817$ Ohms
- $\mathrm{Vin}=3.3349 \mathrm{~V}$
- Vout goes low

At 15 C ,

- $\mathrm{R}=1576.1749$ Ohms
- $\mathrm{Vin}=3.0591 \mathrm{~V}$
- Vout goes high

Von < Voff

- Connect to the minus input

Von $=3.0591 \mathrm{~V}$

- set the offset to 3.0591 V

Slope $=$ gain

- gain $=\left(\frac{5 V-0 V}{3.3349 V-3.0591 V}\right)=18.13$
- set the resistor ratio to 18.13


3) Design a circuit which outputs

- 5V when $10 \mathrm{C}<\mathrm{T}<15 \mathrm{C}$
- 0 V otherwise

Option \#1: Use two comparitors (problem \#1)

- RB0: T > 10C
- RB1: $\mathrm{T}>15 \mathrm{C}$

In software, implement the logic

$$
R C 0=R B 0 \cdot \overline{R B 1}
$$

| Main: |  |  |
| :---: | :---: | :---: |
|  | btfsc | PORTB, 1 |
|  | goto | Clear |
|  | btfss | PORTB, 0 |
|  | goto | Clear |
| Set: |  |  |
|  | bsf | PORTC, 0 |
|  | goto | Main |
| Clear: |  |  |
|  | bcf | PORTC, 0 |
|  | goto | Main |



Option \#2: Get a little tricky with diodes implementing a min function

- Y1: T > 10C
- Y2: $\mathrm{T}<15 \mathrm{C}$
- $\mathrm{Y}=\min (\mathrm{Y} 1, \mathrm{Y} 2)$



## Binary Outputs

4) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off) and 10 mA (on). Assume the specifications for the LEDs are:

| Color | Vf @ 20mA | mcd @ 20 mA |
| :---: | :---: | :---: |
| red | 2.0 V | 10,000 |
| green | 3.2 V | 10,000 |
| blue | 3.2 V | 10,000 |

Since this is less than 5 V and 25 mA , connect directly to a PIC using a resistor

$$
\begin{aligned}
& R_{r}=\left(\frac{5 \mathrm{~V}-2.0 \mathrm{~V}}{10 \mathrm{~mA}}\right)=300 \Omega \\
& R_{g}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{10 \mathrm{~mA}}\right)=180 \Omega \\
& R_{b}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{10 \mathrm{~mA}}\right)=180 \Omega
\end{aligned}
$$


5) Design a circuit which allows your PIC board to turn on and off a 5W LED at 250 mA . The specs for the LED are:

- $\mathrm{Vf}=6.0-7.0 \mathrm{~V}$
- Current $=700 \mathrm{~mA}$
- 500-600 Lumens (equivalent to a 60 W light bulb).
https://www.ebay.com/itm/1W-3W-5W-10W-50W-100W-High-power-SMD-Chip-LED-COB-White-Blue-Red-Light-Beads/124011607823
Assume you have a 6144 NPN transistor:
- max continuous current $=3 \mathrm{~A}$
- current gain $=300$
- $\mathrm{Vbe}=0.7 \mathrm{~V}, \mathrm{Vce}(\mathrm{sat})=0.2 \mathrm{~V}$

Since this is more than a PIC can output, use an NPN transistor as a buffer (switch)
Step 1: Set the current to 250 mA

- Assume a 12 V power supply

$$
R_{c}=\left(\frac{12 V-6.5 V-0.2 V}{250 m A}\right)=21.2 \Omega
$$

Pick Rc to saturate the transistor

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& 300 I_{b}>250 \mathrm{~mA} \\
& I_{b}>0.833 \mathrm{~mA}
\end{aligned}
$$

Let $\mathrm{Ib}=4.3 \mathrm{~mA}$ (arbitrary: more than 0.833 mA , less than 25 mA )

$$
R_{b}=\left(\frac{5 V-0.7 V}{4.3 m A}\right)=1 k \Omega
$$



## Timing:

6) Write a program which outputs the music note $\mathrm{E} 4(329.63 \mathrm{~Hz})$

- Verify the frequency of the square wave you generate
- (Pano Tuner app on you cell phone works well for this)

First, calculate the number of clocks between toggles

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=15,168.5223
$$

Come up with a wait look that burns 15,168 clocks

```
N=10*A*B +5*A + 9 = 15,168
    A=7,B=216 (N = 15,164, 0.03% low)
#include <p18f4620.inc>
; Variables
CNTO EQU 1
CNT1 EQU 2
; Program
    org 0x800
    call Init
Loop:
    incf PORTC,F
    call Wait
    goto Loop
; --- Subroutines ---
Init:
    clrf TRISA
    clrf TRISB
    clrf TRISC
    clrf TRISD
    clrf TRISE
    movlw 0x0F
    movwf ADCON1 ;everyone is binary
    return
Wait:
    movlw 7 ; A
    movwf CNT1
W1:
        movlw 216 ; B
        movwf CNTO
W0:
            nop ; 10 clocks
    nop
            nop
            nop
            nop
            nop
            nop
            decfsz CNTO, F
            goto W0
        decfsz CNT1, F
        goto W1
    return
```

Result $=330.2 \mathrm{~Hz}$

- +0.17\% high



## Lab: PIC Stoplight

7) Give the flow chart for a program to turn your PIC board into a stoplight

- PORTC = East/West
- PORTD = North/South

|  | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PORTC (E/W) | - | - | R | R | Y | Y | G | G |
| PORTD (N/S) | - | - | R | R | Y | Y | G | G |

The stoplight cycles every 14 seconds

| Duration (seconds) | E/W | N/S |
| :---: | :---: | :---: |
| 5 s | G | R |
| 2 s | Y | R |
| 5 s | R | G |
| 2 s | R | Y |

Counting mod 14

| Count | E/W | N/S |
| :---: | :---: | :---: |
| 0 | $0 \times 03$ (green) | $0 \times 30$ (red) |
| 5 | $0 \times 0 \mathrm{C}$ (yellow) | $0 \times 30$ (red) |
| 7 | $0 \times 30$ (red) | $0 \times 03$ (green) |
| 12 | $0 \times 30$ (red) | $0 \times 0 \mathrm{C}$ (yellow) |


8) Write the corresponding assembler code

- Include a routine which waits

```
; --- Stoplight.asm ----
#include <p18f4620.inc>
; Variables
SEC equ 0
CNTO equ 1
CNT1 equ 2
CNT2 equ 3
CNT3 equ 4
    org 0x800
    call Init
L1:
    call Count
    call Lights
    call Wait
    goto L1
Init:
    clrf TRISA
    clrf TRISB
    clrf TRISC
    clrf TRISD
    movlw 0x0F
    movwf ADCON1
    clrf SEC
    return
Count:
    incf SEC,F
    movlw 14
    cpfseq SEC
    goto L2
    clrf SEC
L2:
    movff SEC,PORTA
    return
Lights:
    movlw 0
    cpfseq SEC
    goto L3
    movlw 0x03
    movwf PORTC
    movlw 0x30
    movwf PORTD
    return
L3:
    movlw 5
    cpfseq SEC
    goto L4
    movlw 0x0C
    movwf PORTC
    movlw 0x30
    movwf PORTD
    return
L4:
    movlw 7
    cpfseq SEC
    goto L5
```

```
    movlw 0x30
    movwf PORTC
    movlw 0x03
    movwf PORTD
    return
L5:
    movlw 12
    cpfseq SEC
    goto L6
    movlw 0x30
    movwf PORTC
    movlw 0x0C
    movwf PORTD
    return
L6:
    return
; One second wait routine
; N = 10ABC + 5AB + 5A + 4
; N = 10,050,504
Wait:
    movlw 100 ; A
    movwf CNT2
    movlw 100 ; B
    movwf CNT1
    movlw 100
    movwf CNT0 ; C
W0:
    nop
    nop
    nop
    nop
    nop
    nop
    nop
    decfsz CNT0,F
    goto W0
    decfsz CNT1,F
    goto W1
    decfsz CNT2,F
    goto W2
    return
    end
```

9) Test your code.

- Compile and program your PIC board
- Verify each button's operation

Step \#1: Test the wait routine

|  | org <br> call | $0 \times 800$ <br> Init |
| :--- | :--- | :--- |
| $;$ | incf | PorTC,F |
| $;$ | call | Count |
|  | call | Lights |
|  | call | Wait |
|  | goto | L1 |

After fixing the wait routine, PORTC counts every second

Step \#2: Test the count mod-12 routine

|  | org  <br> L1: call | Init <br> Init |
| :--- | :--- | :--- |
| $;$ | call | Count |
|  | call | Lights |
|  | call | Wait |
|  | goto | L1 |

After fixing more bugs, PORTA counts $0 . .13(\bmod 12)$

Step \#3: Test the lights routine

| org | $0 \times 800$ |
| :--- | :--- |
| call | Init |
|  |  |
| call | Count |
| call | Lights |
| call | Wait |
| goto | L1 |

After a few more bugs, the lights work correctly
10) (20 points) Demonstration

- In-person of with a video


Stoplight Code:

- PORTA = Count (currently at 3 seconds)
- $\operatorname{PORTC}=\mathrm{E} / \mathrm{W}$ (currently green light)
- PORTD $=\mathrm{N} / \mathrm{S}$ (currently red light)

