ECE 376 - Homework #3

Binary Inputs, Binary Outputs, & LEDs - Due Monday, January 29th

Binary Inputs

Assume a thermistor has a resistance-temperature relationship of

$$R = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right)\Omega$$

1) Design a circuit which outputs

- 0V when T < 10C
- 5V when T > 10C

Assume a voltge divider with a 1k resistor. At 10C,

- R = 2002.817 Ohms
- Vin = 3.3349V

As temperature goes up

- R goes down
- Vin goes down
- Vout goes up

Connect to the minus input (negative correlation)

2) Design a circuit which outputs

- 0V when T < 10C
- 5V when T > 15C

This is a Schmitt trigger. Assume a voltage divider with a 1k resistor:

At 10C,

- R = 2002.817 Ohms
- Vin = 3.3349V
- Vout goes low

At 15C,

- R = 1576.1749 Ohms
- Vin = 3.0591V
- Vout goes high

Von < Voff

• Connect to the minus input

Von = 3.0591V

• set the offset to 3.0591V

Slope = gain

•
$$gain = \left(\frac{5V - 0V}{3.3349V - 3.0591V}\right) = 18.13$$

• set the resistor ratio to 18.13

3) Design a circuit which outputs

- 5V when 10C < T < 15C
- 0V otherwise

Option #1: Use two comparitors (problem #1)

- RB0: T > 10C
- RB1: T > 15C

In software, implement the logic

 $RC0 = RB0 \cdot \overline{RB1}$

Main:		
	btfsc	PORTB,1
	goto	Clear
	btfss	PORTB,0
	goto	Clear
Set:		
	bsf	PORTC,0
	goto	Main
Clear:		
	bcf	PORTC,0
	goto	Main

Option #2: Get a little tricky with diodes implementing a min function

- Y1: T > 10C
- Y2: T < 15C
- Y = min(Y1, Y2)

Binary Outputs

4)	Design a	a circ	uit which allow	vs your PIC	board to	turn c	on and o	off an	RGB	Piranah	LED	at 0	mA ((off)
an	d 10mA ((on).	Assume the sp	pecifications	for the I	LEDs	are:							

Color	Vf @ 20mA	mcd @ 20mA
red	2.0V	10,000
green	3.2V	10,000
blue	3.2V	10,000

Since this is less than 5V and 25mA, connect directly to a PIC using a resistor

$$R_r = \left(\frac{5V-2.0V}{10mA}\right) = 300\Omega$$
$$R_g = \left(\frac{5V-3.2V}{10mA}\right) = 180\Omega$$
$$R_b = \left(\frac{5V-3.2V}{10mA}\right) = 180\Omega$$

5) Design a circuit which allows your PIC board to turn on and off a 5W LED at 250mA. The specs for the LED are:

- Vf = 6.0-7.0V
- Current = 700mA
- 500-600 Lumens (equivalent to a 60W light bulb).

https://www.ebay.com/itm/1W-3W-5W-10W-50W-100W-High-power-SMD-Chip-LED-COB-White-Blue-Red-Light-Beads/124011607823

Assume you have a 6144 NPN transistor:

- max continuous current = 3A
- current gain = 300
- Vbe = 0.7V, Vce(sat) = 0.2V

Since this is more than a PIC can output, use an NPN transistor as a buffer (switch)

Step 1: Set the current to 250mA

• Assume a 12V power supply

$$R_c = \left(\frac{12V - 6.5V - 0.2V}{250mA}\right) = 21.2\Omega$$

Pick Rc to saturate the transistor

$$\beta I_b > I_c$$

$$300I_b > 250mA$$

$$I_b > 0.833mA$$

Let Ib = 4.3 mA (arbitrary: more than 0.833 mA, less than 25 mA)

$$R_b = \left(\frac{5V - 0.7V}{4.3mA}\right) = 1k\Omega$$

Timing:

6) Write a program which outputs the music note E4 (329.63 Hz)

- Verify the frequency of the square wave you generate
- (Pano Tuner app on you cell phone works well for this)

First, calculate the number of clocks between toggles

$$N = \left(\frac{10,000,000}{2 \cdot Hz}\right) = 15,168.5223$$

Come up with a wait look that burns 15,168 clocks

```
N = 10*A*B + 5*A + 9 = 15,168
   A = 7, B = 216
                (N = 15,164, 0.03\% low)
#include <p18f4620.inc>
; Variables
CNTO EOU 1
CNT1 EQU 2
; Program
      org 0x800
      call Init
Loop:
      incf PORTC,F
      call Wait
      goto Loop
; --- Subroutines ---
Init:
      clrf TRISA
      clrf TRISB
      clrf TRISC
      clrf TRISD
      clrf TRISE
      movlw 0x0F
      movwf ADCON1 ; everyone is binary
      return
Wait:
               ; A
      movlw 7
      movwf CNT1
W1:
                     ; B
         movlw 216
         movwf CNT0
W0:
            nop
                 ; 10 clocks
      nop
            nop
            nop
            nop
            nop
            nop
            decfsz CNT0, F
            qoto WO
         decfsz CNT1, F
         goto W1
      return
```

Result = 330.2Hz

• +0.17% high

Lab: PIC Stoplight

7) Give the flow chart for a program to turn your PIC board into a stoplight

- PORTC = East/West
- PORTD = North/South

	7	6	5	4	3	2	1	0
PORTC (E/W)	-	-	R	R	Y	Y	G	G
PORTD (N/S)	-	-	R	R	Y	Y	G	G

The stoplight cycles every 14 seconds

Duration (seconds)	E/W	N/S
5s	G	R
2s	Y	R
5s	R	G
2s	R	Y

Counting mod 14

Count	E/W	N/S
0	0x03 (green)	0x30 (red)
5	0x0C (yellow)	0x30 (red)
7	0x30 (red)	0x03 (green)
12	0x30 (red)	0x0C (yellow)

8) Write the corresponding assembler code

• Include a routine which waits

; --- Stoplight.asm ----#include <p18f4620.inc> ; Variables SEC equ 0 CNT0 equ 1 2 CNT1 equ CNT2 equ 3 CNT3 equ 4 0x800 org call Init L1: call Count call Lights call Wait goto L1Init: clrf TRISA clrf TRISB clrf TRISC clrf TRISD movlw 0x0F movwf ADCON1 clrf SEC return Count: incf SEC,F movlw 14 cpfseq SEC goto L2 clrf SEC L2: movff SEC, PORTA return Lights: movlw 0 cpfseq SEC goto LЗ movlw 0x03 movwf PORTC movlw 0x30 movwf PORTD return L3: movlw 5 SEC cpfseq goto L4 movlw 0x0C movwf PORTC movlw 0x30 movwf PORTD return L4: 7 movlw SEC cpfseq goto L5

т Б.		movlw movwf movlw movwf return	0x30 PORTC 0x03 PORTD			
		movlw cpfseq goto movlw movwf movlw movwf return	12 SEC L6 0x30 PORTC 0x0C PORTD			
L6:		return				
; Or ; N ; N	ne = =	second wai 10ABC + 57 10,050,504	t routine AB + 5A + I	4		
Wait	::	movlw	100	;	A	
MO.		movwf	CNT2	,		
VVZ.		movlw movwf	100 CNT1	;	В	
W1:		movlw movwf	100 CNT0	;	С	
w0:		nop nop nop nop nop nop decfsz goto	CNTO,F WO			
		decfsz goto	CNT1,F W1			
		decfsz goto	CNT2,F W2			
		return				
		end				

9) Test your code.

- Compile and program your PIC board
- Verify each button's operation

Step #1: Test the wait routine

	org	0x800 Tnit
L1:	Gull	11110
	incf	PORTC,F
;	call	Count
;	call	Lights
	call	Wait
	goto	L1

After fixing the wait routine, PORTC counts every second

Step #2: Test the count mod-12 routine

	org	0x800 Tnit
L1:	OUII	11110
	call	Count
;	call	Lights
	call	Wait
	goto	L1

After fixing more bugs, PORTA counts 0..13 (mod 12)

Step #3: Test the lights routine

	org	0x800
	call	Init
L1:		
	call	Count
	call	Lights
	call	Wait
	goto	L1

After a few more bugs, the lights work correctly

10) (20 points) Demonstration

• In-person of with a video

Stoplight Code:

- PORTA = Count (currently at 3 seconds)
- PORTC = E/W (currently green light)
- PORTD = N/S (currently red light)