
ECE 376 - Homework #4
C Programming and LCD Displays - Due Monday, February 12th

1) Determine how many clocks the following C code takes to execute

Compile and download the code (modify working code and replace the main loop)

Measure the frequency you see on RC0 (toggles every loop).

- Use an osiclloscope - or -

- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app
like Piano Tuner

- RC1 is 1/2 the frequency of RC0, RC2 is 1/4th, RC3 = 1/8th, etc

The number of clocks it takes to execute each loop is

N =

10,000,000

2⋅Hz

1a) Counting mod 128

unsigned char i
while(1) {
 i = (i + 1) % 128;
 if(i == 0) PORTC += 1;
 }

f = 1149.8Hz

 clocks for 128 loopsN =

10,000,000

2⋅Hz

 = 4348.58

N

128
= 33.97

It takes 34 clocks to count mod 128

1b) Counting mod 127

unsigned char i
while(1) {
 i = (i + 1)% 127;
 if(i == 0) PORTC += 1;
 }

f = 240.1Hz

 clocks for 127 loopsN =

10,000,000

2⋅Hz

 = 20, 824.65

N

127
= 163.97

It takes 164 clocks to count mod 127

1c) Floating Point Multiplication

note: you need to include Math.h #include <math.h>

float A, B, C;
A = sqrt(3);

 B = sqrt(2);
while(1) {

 i = (i + 1)% 16;
 if(i == 0) PORTC += 1;
 C = A * B;
 }

Frequency = 252.7Hz

 clocks for 16 loopsN =

10,000,000

2⋅Hz

 = 19, 786.307

 clocks per loop
N

16
= 1236.64

Subtract out 34 clocks per loop for counting and you have 1202.6

It takes 1202 assembler instructions to do a floating point multiply

1d) Floating Point Square Root

float A, B, C;
A = sqrt(3);

 B = sqrt(2);
while(1) {

 C = sqrt(A);
 PORTC += 1;
 }

Te frequency is 223.0Hz

N =

10,000,000

2⋅Hz

 = 22, 421.52

It takes 22,421 clocks to find the square root

Stoplight in C

2) Write a C program which turns your PIC into a stoplight:

7 6 5 4 3 2 1 0

PORTC (E/W) - - R R Y Y G G

PORTD (N/S) - - R R Y Y G G

The stoplight cycles every 14 seconds

Seconds E/W N/S

5 seconds G R

2 seconds Y R

5 seconds R G

2 seconds R Y

// Subroutine Declarations
#include <pic18.h>

void Wait(unsigned int X)
{
 unsigned int i, j;
 for (i=0; i<X; i++)
 for(j=0; j<617; j++);
 }

// Main Routine

void main(void)
{

unsigned int TIME;

TRISA = 0;
TRISB = 0;
TRISC = 0;
TRISD = 0;
TRISE = 0;
ADCON1 = 0x0F;

 TIME = 0;

while(1) {
PORTA = TIME;
if(TIME == 0) {

 PORTC = 0x03;
PORTD = 0x30;
}

if(TIME == 5) {
PORTC = 0x0C;
PORTD = 0x30;
}

if(TIME == 7) {
PORTC = 0x30;
PORTD = 0x03;
}

if(TIME == 12) {
PORTC = 0x30;
PORTD = 0x0C;
}

TIME = (TIME + 1) % 14;
Wait(1000);

 }
}

3) Verify your program runs on your PIC board

Include the size of the compiled C code

Check the timing by observation (an oscilloscope would be better...)

Memory Summary:
 Program space used 212h (530) of 10000h bytes (0.8%)
 Data space used 9h (9) of F80h bytes (0.2%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

Resulting code was 265 lines of assembly (530 bytes)

In comparison, the assembler code was 72 lines of code

The C program was 268% larger than the assembler code

but much easier to write

Roulette!

Problem 4-8) Turn your PIC board into a Roulette wheel

Problem 4) Display Routine

Write a C program in C which

Is passed a number from 0..7

The routine displays the number on the LCD display, and

It light up RCx where x is the number (0..7)

Check your subroutine

// Global Variables

const unsigned char MSG0[20] = "N: ";
const unsigned char MSG1[20] = "Bank: ";

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

void Display(unsigned int BANK, unsigned int BALL)

{

 LCD_Move(0,8); LCD_Out(BALL, 1, 0);

 LCD_Move(1,8); LCD_Out(BANK, 3, 0);

 if(BALL == 0) PORTC = 1;

 if(BALL == 1) PORTC = 2;

 if(BALL == 2) PORTC = 4;

 if(BALL == 3) PORTC = 8;

 if(BALL == 4) PORTC = 0x10;

 if(BALL == 5) PORTC = 0x20;

 if(BALL == 6) PORTC = 0x40;

 if(BALL == 7) PORTC = 0x80;

 }

// Main Routine

void main(void)
{
 unsigned int BANK, BALL;
 unsigned int i, j;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 LCD_Init();
 LCD_Move(0,0); for(i=0; i<16; i++) LCD_Write(MSG0[i]);
 LCD_Move(1,0); for(i=0; i<16; i++) LCD_Write(MSG1[i]);

 BANK = 10;

 BALL = 3;

 while(1) {

 Display(BANK, BALL);

 Wait_ms(100);

 }

 }

Problem 5) Random Number Generator.

Program your PIC board to generate a random number in the range of 0..7 every time you press and
release RB0.

Display this number on the LCD and on PORTC

Generate 5+ random numbers and check your random number generator works.

:
:

unsigned int Spin_Wheel(void)

{

 unsigned int N;

 while(!RB0);

 while(RB0) N = (N + 1) % 8;

 return(N);

 }

// Main Routine

 BANK = 100;
 BALL = 3;

 while(1) {

 BALL = Spin_Wheel();

 Display(BANK, BALL);
 Wait_ms(100);
 }
 }

Results: {5, 1, 3, 4, 2, 1, 6, 3, 7, 6, 5, 1, 4}

The numbers look random in the range of 0..7

Problem 6) Spin the Wheel

Modify this code so that each time you press RB0

You generate a random number from 0..7

You set a counter to N where N = 32 + the random number

You then start counting down to zero

Each count is 200ms

Each count the ball moves one position. (if the ball moves to position #8, it goes back to #0)

Display the ball position on the LCD and on PORTC

Check you code

// Main Loop

 BANK = 100;
 BALL = 3;

 while(1) {

 N = Spin_Wheel();

 for(i=0; i<32+N; i++) {

 BALL = (BALL + 1) % 8;

 Display(BANK, BALL);

 Wait_ms(200);

 }

 Display(BANK, BALL);

 Wait_ms(1000);

 }

When you press and release RB0

N counts mod 8

A light shows up on PORTC

After four rotations, the light and number stop

Each count is 200ms (approx)

Problem 7) Winning Numbers

Modify the code so that after N steps, you check if you won or not.

If the ball ends up in position #7 (lucky 7), you win and your bank value is increased by $8

Otherwise, you lose and your bank value is decreased by $1.

Check your code to see that you win on seven and lose otherwise.

 while(1) {
 N = Spin_Wheel();
 for(i=0; i<32+N; i++) {
 BALL = (BALL + 1) % 8;
 Display(BANK, BALL);
 Wait_ms(200);
 }

 if(BALL == 7)

 BANK += 8;

 else

 BANK -= 1;

 Display(BANK, BALL);
 Wait_ms(1000);
 }

Check:

When 7 comes up, the bank increases by 8

For other numbers, the bank drops by 1

Problem 8) Beep

Finally, modify your code so that a speaker beeps every count

Frequency = 200Hz

Duration = 50ms (20 toggles)

Beep Routine:

void Beep(void) {
 unsigned int i, j;
 for(i=0; i<20; i++) {
 RC0 = !RC0;
 for(j=0; j<1558; j++);
 }
 }

Test Code:

 while(1) {
 Beep();
 }

Result: 200.2Hz

Final Main Routine:

 while(1) {
 N = Spin_Wheel();
 for(i=0; i<32+N; i++) {
 BALL = (BALL + 1) % 8;
 Display(BANK, BALL);

 Beep();

 Wait_ms(100);
 }

 if(BALL == 7)
 BANK += 8;
 else
 BANK -= 1;

 Display(BANK, BALL);
 Wait_ms(1000);
 }

Problem 9) Demo (20 pt)

Demonstrate your Roulette wheel

Final Code:

Note: a PIC can do a lot more than run a roulette wheel

Memory Summary:
 Program space used C10h (3088) of 10000h bytes (4.7%)
 Data space used 31h (49) of F80h bytes (1.2%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

Final Code:

// Global Variables

const unsigned char MSG0[20] = "N: ";
const unsigned char MSG1[20] = "Bank: ";

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

void Beep(void) {
 unsigned int i, j;
 for(i=0; i<20; i++) {
 RC0 = !RC0;
 for(j=0; j<1558; j++);
 }
 }

void Display(unsigned int BANK, unsigned int BALL)
{
 LCD_Move(0,8); LCD_Out(BALL, 1, 0);
 LCD_Move(1,8); LCD_Out(BANK, 3, 0);
 if(BALL == 0) PORTC = 1;
 if(BALL == 1) PORTC = 2;
 if(BALL == 2) PORTC = 4;
 if(BALL == 3) PORTC = 8;
 if(BALL == 4) PORTC = 0x10;
 if(BALL == 5) PORTC = 0x20;
 if(BALL == 6) PORTC = 0x40;
 if(BALL == 7) PORTC = 0x80;
 }

unsigned int Spin_Wheel(void)
{
 unsigned int N;
 while(!RB0);
 while(RB0) N = (N + 1) % 8;
 return(N);
 }

// Main Routine

void main(void)
{
 unsigned int BANK, BALL, N, i, j;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0;
 TRISD = 0;
 TRISE = 0;
 ADCON1 = 0x0F;

 LCD_Init();
 LCD_Move(0,0); for(i=0; i<16; i++) LCD_Write(MSG0[i]);
 LCD_Move(1,0); for(i=0; i<16; i++) LCD_Write(MSG1[i]);

 BANK = 100;
 BALL = 3;

 while(1) {
 N = Spin_Wheel();
 for(i=0; i<32+N; i++) {
 BALL = (BALL + 1) % 8;
 Display(BANK, BALL);
 Beep();
 Wait_ms(100);
 }

 if(BALL == 7)
 BANK += 8;
 else
 BANK -= 1;

 Display(BANK, BALL);
 Wait_ms(1000);
 }
 }

