ECE 376 - Homework \#5

Keypads in C, Stepper Motors, NeoPixels in C

NeoPixel Flashlight

1) Requirements: Specify the inputs / outputs / how they relate.

- Input a number from $0 . .255$ using the keypad
- Press RB0
- The NeoPixel then lights up with a white light at that brightness level (0..255)

2) C code, flow chart, and resulting number of lines of assembler Code: Main Loop
```
// NeoPixel Flashlight
//
// Input a number from 000 to 255
// Press RB0
// NeoPixel turns on at that brightness
// Global Variables
unsigned char PIXEL @ 0x000;
const unsigned char MSGO[21] = "Flashlight
    ";
const unsigned char MSG1[21] = "Level:
    ";
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include "lcd_portd.c"
```


Compiler Results

Memory Summary:
Program space
Data space
EEPROM space
ID Location space
Configuration bits

used	$10 E 6 h$	(
used	2 Ch	(
used	$0 h$	(
used	$0 h$	(
used	$0 h$	(

$4326)$	of	$10000 h$ bytes
$44)$	of	F 80 h bytes
$0)$	of	400 h bytes
$0)$	of	8 h nibbles
$0)$	of	$7 h$ words

$6.6 \%)$
$1.1 \%)$
$0.0 \%)$
$0.0 \%)$
$0.0 \%)$
3) Validation: Collect data in lab to verify you met the requirements.

Requirement: Input a number from 000 to 255 using the keypad

- Input 000 (works)
- Input 255 (works)
- Input 123 (works)

Requirement: Press \#. The NeoPixel goes to that brightness (255 = 100\%)

Input Number	NeoPixels	Current (mA)	\% Full Scale theory	\% Full Scale measured
0	off	7.1	0%	0.0%
5	dim	12.0	1.9%	1.9%
50		58.9	19.6%	20.48%
100		110.0	39.2%	40.69%
255	really bright	260	100%	100.0%

4) Demo. Video or in person.

Analog Inputs

5) Determine how long it takes to do an A/D conversion with a PIC processor
```
void main(void)
{
    TRISC = 0;
    ADCON1 = 0x0F;
// Turn on the A/D input
    TRISA = 0xFF;
    TRISE = 0x0F;
    ADCON2 = 0x95;
    ADCON1 = 0x07;
    ADCONO = 0x01;
    while(1) {
        A2D = A2D_Read(0);
        PORTC = PORTC + 1;
        }
    }
```

$\mathrm{f}=15.35 \mathrm{kHz}$

$$
N=\left(\frac{10,000,000}{2 \cdot H z}\right)=325.73
$$

It takes about 32.57us to do an A/D read
(a little less if you take the time to count into account)

6) Assume the A / D reads 875 for the following circuit.

- What is the voltage, Vx?
- What is the resitance, Rt?
- What is the temperature?

Assume

$$
R_{t}=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

Vx is proportional to the A / D reading

$$
\begin{aligned}
& V_{x}=\left(\frac{875}{1023}\right) 5.00 \mathrm{~V} \\
& V_{x}=4.2766 \mathrm{~V}
\end{aligned}
$$

Rt comes from voltage division:

$$
\begin{aligned}
& V_{x}=\left(\frac{R_{t}}{R_{t}+1000}\right) 5 V \\
& R_{t}=\left(\frac{V_{x}}{5-V_{x}}\right) 1000 \Omega \\
& R_{t}=5912 \Omega
\end{aligned}
$$

Tempeature comes from the thermistor equation

$$
5912.16 \Omega=1000 \cdot \exp \left(\frac{3905}{T+273}-\frac{3905}{298}\right) \Omega
$$

$$
T=-10.58 C
$$

Stepper Motor Angle Control

7) Requirements: Specify the inputs / outputs / how they relate.

Input:

- Analog Input: $0 . .255$

Output:

- Stepper Motor

Relationship

- Input a number from 000 to 255 using the analog input
- The stepper motor then moves to that number of steps
- At a rate of $30 \mathrm{~ms} / \mathrm{step},+/-5 \mathrm{~ms}$

8) C code, flow chart, and resulting number of lines of assembler

```
// Stepper3.C
// Position control of a stepper motor
// Global Variables
const unsigned char MSG1[16] = "REF ";
const unsigned char MSG2[16] = "STEP ";
unsigned char TABLE[4] = {1, 2, 4, 8};
// Subroutine Declarations
#include <pic18.h>
#include "LCD_PortD.C"
unsigned int A2D_Read(unsigned char c)
{
    unsigned int result;
    unsigned char i;
    c = c & 0x0F;
    ADCONO = (c << 2) + 0x01; // set Channel Select
    for (i=0; i<20; i++); // wait 2.4us (approx)
    GODONE = 1; // start the A/D conversion
    while(GODONE); // wait until complete (approx 8us)
    return(ADRES);
    }
// main routine
void main(void) {
    unsigned int i, REF, STEP ;
    TRISA = 0;
    TRISB = 0xFF;
    TRISC = 0;
    ADCON1 = 0x0F;
    STEP = 0;
    REF = 100;
// Initialize the A/D port
    TRISA = 0xFF;
    TRISE = 0x0F;
    ADCON2 = 0x85;
    ADCON1 = 0x07;
    ADCONO = 0x01;
    LCD_Init();
    LCD_Move(0,0); for (i=0; i<16; i++) LCD_Write(MSG1[i]);
    LCD_Move(1,0); for (i=0; i<16; i++) LCD_Write(MSG2[i]);
    Wait_ms(100);
    while(1) {
        REF = A2D_Read(0) / 4;
        if (STEP < REF) STEP = STEP + 1;
        if (STEP > REF) STEP = STEP - 1;
        PORTC = TABLE[STEP % 4];
        LCD_Move(0,8); LCD_Out(REF, 5, 0);
        LCD_Move(1,8); LCD_Out(STEP, 5, 0);
        Wait_ms(1);
        }
    }
```


Compilation Results

```
Memory Summary:
```


9) Validation: Collect data in lab to verify you met the requirements.

Requirement: Input numbers 000 to 255 with the analog input

- Knob all the way left: 000 (works)
- Knob all the way right (255) (works)
- Knob in the middle (126) (works)

Requirement: The motor goes to that angle

Input	Went To..
0	0
50	50 steps (90 degrees)
100	100 steps (180 degrees)
200	200 steps (360 degrees)

Requirement: At a rate of $30 \mathrm{~ms} / \mathrm{step},+/-5 \mathrm{~ms}$

- 255 steps took 7.47 seconds (using stopwatch)
- Time $=29.3 \mathrm{~ms} /$ step

10) Demo. Video or in person.

