ECE 376 - Homework \#6

Data Collection \& Chi-squared Test.

Data Collection

1) Measure one of the following with at least two data sets and 20+ data points per run:

- The voltage across a capacitor as it discharges
- The temperature of a cup (or can) of hot water as it cools off
- The temperature of a can of cold water as it warms up
- Other

Plot the resulting data vs. time.

2) Come up with an exponential curve fit for your data in the form of

$$
V=a \cdot \exp (b t)
$$

or

$$
\ln (V)=b t+\ln (a)
$$

in Matlab
$\gg t=[1: \text { length }(V)]^{\prime} * 0.01 ;$
\gg plot (t,V)
>> xlabel('Time (seconds)');
>> Ylabel ('Volts');
$\gg B=[t, t . \wedge 0]$;
$\gg Y=\log (V) ;$
$\gg A=\operatorname{inv}\left(B^{\prime} * B\right) * B^{\prime} * Y$
$A=$
-0.2001
1.6404
$\gg \mathrm{b}=\mathrm{A}(1)$;
$\gg a=\exp (A(2))$
$a=$
5.1573
$\gg \operatorname{plot}\left(t, V, b^{\prime}, t, a^{*} \exp (b * t),^{\prime} r^{\prime}\right)$

3) Use a chi-squared test to determine if your data has an exponential distribution

- Split the data into N bins (N different times)
- Count the number of data points in each bin
- Compare to the expected frequency using a chi-squared test)

In Matlab

```
>> sum( (V>4) )
ans=105
>> sum( (V>3).* (V<4) )
ans=140
>> sum( (V>2).* (V<3) )
ans=200
>> sum( (V>1).* (V<2) )
ans=343
```

The voltage should decay as

$$
V=5 \cdot \exp (-0.2001 t)
$$

The time it takes to decay to

- $4 \mathrm{~V}: 1.115$ seconds
- $3 \mathrm{~V}: 2.554$ seconds
- 2V: 4.5815 seconds
- 1V: 8.0427 seconds

The time spent in each region divided buy the total time (8.0427 seconds) gives the probablility that a given data point is in that region

Voltages	Time in Region	p	np	N	chi-squared
$4 \mathrm{~V}-5 \mathrm{~V}$	1.115 sec	0.1386	109.2168	105	0.1628
$3 \mathrm{~V}-4 \mathrm{~V}$	1.439 sec	0.1789	140.9732	140	0.0067
$2 \mathrm{~V}-3 \mathrm{~V}$	2.027 sec	0.2520	198.5760	200	0.0102
$1 \mathrm{~V}-2 \mathrm{~V}$	3.461 sec	0.4303	339.0764	343	0.0454

From StatTrek, a chi-squared score of 0.2251 with 3 degrees of freedom corresponds to a probability of 0.027

There is a $\mathbf{2 . 7 \%}$ chance that this is not an exponential distribution

Fair \& Loaded Dice

4) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6 -sided die:
```
while(1) {
    while(!RB0);
    while(RBO) DIE = (DIE + 1) % 6;
    DIE += 1;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

bin	p	np	N	chi-squared					
1	$1 / 6$	25.67	17	2.9264					
2	$1 / 6$	25.67	33	2.0952					
3	$1 / 6$	25.67	34	2.7056					
4	$1 / 6$	25.67	27	0.0693					
5	$1 / 6$	25.67	23	0.2771					
6	$1 / 6$	25.67	20	1.2511					
								Total:	9.3247

From StatTrek, with 5 degrees of freedom, this corresponds to a probability of 0.903
There is a $\mathbf{9 0 . 3 \%}$ chance that this is not a fair die

- Enter value for degrees of freedom.
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the remaining textbox.

Degrees of freedom	5
Chi-square value (x)	9.3247
Probability: $P\left(X^{2} \leq 9.3247\right)$	0.903
Probability: $P\left(X^{2} \geq 9.3247\right)$	0.097

5) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6 -sided die:
```
while(1) {
    while(!RBO);
    while(RB0) {
        DIE = (DIE + 1) % 6;
        X = (X + 1) % 11;
        }
    DIE = DIE + 1;
    if(X == 0) DIE = 6;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

bin	p	np	N	chi-squared					
1	$1 / 6$	25.6667	19	1.7316					
2	$1 / 6$	25.6667	25	0.0173					
3	$1 / 6$	25.6667	19	1.7316					
4	$1 / 6$	25.6667	15	4.4329					
5	$1 / 6$	25.6667	37	5.0043					
6	$1 / 6$	25.6667	39	6.9264					
								Total:	19.8442

Now covnvert the chi-squared score (19.844) to a probability using StatTrek
There is a $\mathbf{9 9 . 9 \%}$ chance that this is not a fair die

- Enter value for degrees of freedom.
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the remaining textbox

Am I Psychic?

6) Write a C program which tests if you're psychic with a 4-sided die:

- Each round, predict which number is going to come up (0..3)
- Press the corresponding button RB0..RB3.
- When you release the button, a random number in the range of $0 . .3$ is generated
- If you were right, the PIC records that. Likewise if you were wrong.
- The LCD display displays how many times you were right and wrong.

```
// Global Variables
const unsigned char MSGO[21] = "Right " ";
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include "lcd_portd.c"
// Main Routine
void main(void)
{
:
:
    }
}
```

7) Collect data with your program.

Correct	Incorrect
14	31

8) Determine the chance that you were not just guessing using a chi-squared test

- Null hypothesis: you are just guessing (correct 33% of the time).

bin	p	np	N	chi-squared
correct	$1 / 4$	11.25	14	0.6722
incorrect	$3 / 4$	33.75	31	0.2241

From StatTrek, a chi-squared score of 0.1 corresponds to a probability of 0.65622
There is a $\mathbf{6 5 . 6 \%}$ chance that I'm not just guessing (no conclusion)

- Enter value for degrees of freedom.
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the remaining textbox.

