ECE 376 - Homework #6

Data Collection & Chi-squared Test.

Data Collection

1) Measure one of the following with at least two data sets and 20+ data points per run:

- The voltage across a capacitor as it discharges
- The temperature of a cup (or can) of hot water as it cools off
- The temperature of a can of cold water as it warms up
- Other

Plot the resulting data vs. time.

2) Come up with an exponential curve fit for your data in the form of

$$V = a \cdot \exp(bt)$$

or

 $\ln(V) = bt + \ln(a)$

in Matlab

```
>> plot(t,V,'b',t,a*exp(b*t),'r')
>>
```


3) Use a chi-squared test to determine if your data has an exponential distribution

- Split the data into N bins (N different times)
- Count the number of data points in each bin
- Compare to the expected frequency using a chi-squared test)

In Matlab

```
>> sum( (V>4) )
ans = 105
>> sum( (V>3).*(V<4) )
ans = 140
>> sum( (V>2).*(V<3) )
ans = 200
>> sum( (V>1).*(V<2) )
ans = 343</pre>
```

The voltage should decay as

$$V = 5 \cdot \exp\left(-0.2001t\right)$$

The time it takes to decay to

- 4V: 1.115 seconds
- 3V: 2.554 seconds
- 2V: 4.5815 seconds
- 1V: 8.0427 seconds

The time spent in each region divided buy the total time (8.0427 seconds) gives the probability that a given data point is in that region

Voltages	Time in Region	р	np	Ν	chi-squared
4V - 5V	1.115 sec	0.1386	109.2168	105	0.1628
3V - 4V	1.439 sec	0.1789	140.9732	140	0.0067
2V - 3V	2.027 sec	0.2520	198.5760	200	0.0102
1V - 2V	3.461 sec	0.4303	339.0764	343	0.0454
				Total:	0.2251

From StatTrek, a chi-squared score of 0.2251 with 3 degrees of freedom corresponds to a probability of 0.027

There is a 2.7% chance that this is not an exponential distribution

Fair & Loaded Dice

4) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:

```
while(1) {
   while(!RB0);
   while(RB0) DIE = (DIE + 1) % 6;
   DIE += 1;
   LCD_Move(1,0); LCD_Out(DIE, 1, 0);
   SCI_Out(DIE, 1, 0);
   SCI_CRLF();
  }
```

bin	р	np	Ν	chi-squared
1	1/6	25.67	17	2.9264
2	1/6	25.67	33	2.0952
3	1/6	25.67	34	2.7056
4	1/6	25.67	27	0.0693
5	1/6	25.67	23	0.2771
6	1/6	25.67	20	1.2511
			Total:	9.3247

From StatTrek, with 5 degrees of freedom, this corresponds to a probability of 0.903

There is a 90.3% chance that this is not a fair die

Enter value for degrees of freedom.Enter a value for one, and only one, of the other textboxes.			
• Click Calculate to compute a value for the remaining textbox.			
Degrees of freedom	5		
Chi-square value (x)	9.3247		
Probability: P(X ² ≤9.3247)	0.903		
Probability: P(X ² ≥9.3247)	0.097		
Calculate			

5) Determine experimentaly using a chi-squared test whether or not the following C code produces a fair 6-sided die:

```
while(1) {
    while(!RB0);
    while(RB0) {
        DIE = (DIE + 1) % 6;
        X = (X + 1) % 11;
        }
    DIE = DIE + 1;
    if(X == 0) DIE = 6;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

bin	р	np	Ν	chi-squared
1	1/6	25.6667	19	1.7316
2	1/6	25.6667	25	0.0173
3	1/6	25.6667	19	1.7316
4	1/6	25.6667	15	4.4329
5	1/6	25.6667	37	5.0043
6	1/6	25.6667	39	6.9264
			Total:	19.8442

Now covnvert the chi-squared score (19.844) to a probability using StatTrek

There is a 99.9% chance that this is not a fair die

Enter value for degrees of freedom.				
• Enter a value for one, and only one, of the other textboxes.				
Click Calculate to compute a value for the remaining textbox.				
Degrees of freedom	5			
Chi-square value (x) 19.844				
Probability: P(X ² ≤19.844) 0.999				
Probability: P(X ² ≥19.844) 0.001				
Calculate				

Am I Psychic?

6) Write a C program which tests if you're psychic with a 4-sided die:

- Each round, predict which number is going to come up (0..3)
- Press the corresponding button RB0..RB3.
- When you release the button, a random number in the range of 0..3 is generated
- If you were right, the PIC records that. Likewise if you were wrong.
- The LCD display displays how many times you were right and wrong.

```
// Global Variables
const unsigned char MSG0[21] = "Right
const unsigned char MSG1[21] = "Wrong
// Subroutine Declarations
#include <pic18.h>
// Subroutines
#include "lcd_portd.c"
// Main Routine
void main(void)
{
:
:
}
}
```

7) Collect data with your program.

Correct	Incorrect
14	31

"; ";

8) Determine the chance that you were not just guessing using a chi-squared test

• Null hypothesis: you are just guessing (correct 33% of the time).

bin	р	np	Ν	chi-squared
correct	1/4	11.25	14	0.6722
incorrect	3/4	33.75	31	0.2241
			Total:	0.8963

From StatTrek, a chi-squared score of 0.1 corresponds to a probability of 0.65622

There is a 65.6% chance that I'm not just guessing (no conclusion)

Enter value for degrees of freedom.				
 Enter a value for one, and only one, of the other textboxes. 				
 Click Calculate to compute a value for the remaining textbox. 				
Degrees of freedom 1				
Chi-square value (x) 0.8963				
Probability: P(X ² ≤0.8963) 0.65622				
Probability: P(X ² ≥0.8963)	0.34378			
Calculate				