ECE 376 - Test \#1: Name

1) Digital Inputs. Design a circuit which outputs

- $0 V$ when $\mathrm{R}>2500$ Ohms
- 5 V when $\mathrm{R}<2000$ Ohms

Assume

- $\mathrm{R} 1=900+100^{*}$ (your birth month) + (your birth date).
- May 14th, for example, gives R1 = 1414 Ohms

Let R1 = 1514 Ohms
$\mathrm{R}=2000$ Ohms (on)

$$
V=\left(\frac{2000}{2000+1514}\right) 5 V=2.8458 V
$$

$\mathrm{R}=2500$ Ohms (off)

$$
V=\left(\frac{2500}{2500+1514}\right) 5 V=3.1141 V
$$

V (on) $<\mathrm{V}$ (off)

- connect to the minus input
$\mathrm{V}(\mathrm{on})=2.8458 \mathrm{~V}$
- Make the offset 2.8458 V

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right)=\left(\frac{5 V-0 V}{3.1141 V-2.8458 V}\right)=18.633
$$

2) Digital Outputs: Design a circuit which allows your PIC to turn on and off a 20W LED at N Lumens - $\mathrm{N}=900+100^{*}$ (your birth month) + (your birth date)

- $\mathrm{N}=1414$ Lumens for May 14th, for example

Assume a 20W LED has the following characteristics

- $\mathrm{Vf}=36 \mathrm{~V}$ @ 600mA
- 1800 Lumens @ 600mA

Assume a 6144 NPN transistor

- $\mathrm{Vbe}=700 \mathrm{mV}$
- V ce $($ sat $)=360 \mathrm{mV}$
- Current gain $=\beta=200$

Lumens $900+100 *$ Month + Day	Ic (mA)	Rb	Rc
1514 Lumens	504.67 mA	430 Ohms	27.03 Ohms

$$
\begin{aligned}
& I_{c}=\left(\frac{1514 \text { Lumens }}{1800 \text { Lumens }}\right) 600 \mathrm{~mA}=504.67 \mathrm{~mA} \\
& R_{c}=\left(\frac{50 \mathrm{~V}-36 \mathrm{~V}-0.36 \mathrm{~V}}{504.67 \mathrm{~mA}}\right)=27.03 \Omega
\end{aligned}
$$

To saturate the transistor

$$
I_{b}>\left(\frac{I_{c}}{\beta}\right)=\left(\frac{504.67 \mathrm{~mA}}{200}\right)=2.52 \mathrm{~mA}
$$

Let $\mathrm{Ib}=10 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{10 m A}\right)=430 \Omega
$$

3) Assembler: Determine the contents of the W, PORTB, and PORTC registers after each operation. Assume

- PORTB and PORTC are output.
- Default is decimal

	W	PORTB	PORTC
Start:	Birth Month (1..12) 5	Birth Date (1..31) 14	15
incf PORTB, F	5	15	15
decf PORTC,W	14	15	15
addwf PORTB,F	14	29	15
andlw 7	6	29	15
bsf PORTB,4	6	29	15
bcf PORTC, 2	6	29	11
movlw 7	7	29	11
addwf PORTB,F	7	36	11
subwf PORTC,F	7	36	4
clrf PORTB	7	0	4

4) Assembler \& Timing:

a) Convert the following C code to assembler.

- Assume A, B, and C are 8 -bit numbers
b) How long does your program take to execute?

```
# Clocks =
unsigned char A, B, C;
if(A > B)
    C = A;
else
    C = B;
A equ 0
B B equ 
movf B,W
    cmpfsgt A
    goto PickB
PickA:
    movff A,C
    goto end
PickB:
    movff B,C
end:
    nop
```

Number of Clocks:

- if $(\mathrm{A}>\mathrm{B})$ it takes 7 clocks to execute
- otherwise, it takes 6 clocks to execute

5) Assember \& Flow Charts. Write an assembler program that corresponds to the following flow chart. This program turns your PIC processor a 6 and 10 sided die:

- When RB0 is pressed and released
- PORTC displays a random number from $1 . .6$ (six-sided die)
- PORTD displays a random number from $1 . .10$ (ten-sided die)
- d6 and d10 are 8-bit variables in RAM

Test \#1: (due Friday) Write the assembler code
Bonus (due Monday): Demonstrate your program on your PIC board

