ECE 376 - Test \#2: Name

C-Programming on a PIC Processor

1) C Coding \& Flow Charts (25 points)

Write the corresponding C code for the flow chart shown to play a limited version of Black Jack

- Start with zero points
- Draw a card (aces are always 11 points)
- Compute your score
- Keep playing until you have 16 or more points
- If you go over 21 points, you lose
assume a subroutine exists that returns a number $1 . .13$ when called (different problem on this test)

```
void main(void) {
    ADCON1 = 0x0F;
    TRISB = 0xFF;
    TRISC = 0;
    Score = 0;
    while(Score < 16) {
        Value = Draw_Card(13);
        if(Card == 1) Points = 11;
        elseif(Card > 10) Points = 10;
        else Points = Card;
        Score += Points;
        if(Score < 16) RCO = !RC0;
        }
    if(Score > 21) RC1 = 1;
    else RC2 = 1;
// Stop
    while(1);
    }
```


2) Subroutines: (25 points)

Write a subroutine

- Which is passed an integer, N
- The subroutine waits until you press and release button RB0
- When released, a random number (X) is returned in the range of 1 .. N

```
unsigned int Draw_Card(unsigned int N)
{
    unsigned int X;
    while(!RB0);
    while(RB0) {
        X = (X + 1) % N;
        }
    X = X + 1;
    return(X);
    }
```


3) Analog Inputs (25 points)

Assume the A/D input to a PIC processor has the following hardware connection where R is a 3 k thermistor where T is the temperature in degrees C

$$
R=2200 \cdot \exp \left(\frac{3800}{T+273}-\frac{3800}{298}\right) \Omega
$$

Let the R1 be your birthday

$$
\begin{aligned}
& \mathrm{R} 1=900+100 * \text { month }+ \text { day } \\
& \text { May } 15 \text { th would give } \mathrm{R} 1=1415 \text { Ohms }
\end{aligned}
$$

If the A / D reads 872 , determine

- The temperature in degrees C ,
- The resistance, R,

- The voltage, V1, and
- The smallest change in termperature you can detect

R1 $900+100^{*}$ mo + day	T (degees C)	R Thermistor - Ohms	V1 Volts	A/D Reading
$\mathbf{1 4 1 5}$	$\mathbf{- 2 . 8 0 3 9} \mathbf{C}$	$\mathbf{8 1 8 1 . 3 9}$ Ohms	$\mathbf{4 . 2 6 2 0} \mathbf{V}$	$\mathbf{8 7 2}$

$$
\begin{aligned}
& V_{1}=\left(\frac{872}{1023}\right) 5 V=4.2620 V \\
& V_{1}=\left(\frac{R}{R+1415}\right) 5 V=4.2620 V \\
& R=\left(\frac{V_{1}}{5 V-V_{1}}\right) 1415 \Omega \\
& R=8171.39 \Omega \\
& R=8181.39 \Omega=2200 \cdot \exp \left(\frac{3800}{T+273}-\frac{3800}{298}\right) \Omega
\end{aligned}
$$

$$
T=-2.8039^{\circ} \mathrm{C}
$$

4) chi-squared test (10 points)

The high and low temperature in Fargo has been recorded each day since 1900 (124 years). So far this year, Fargo has hit a record high nine times in the past 71 days.

Use a chi-squared test to determine the probability that 2024 is no different than any other year (the probability of any given day being a record high is $1 / 124$).
note: $\mathrm{n}=71$ (first 71 days of 2024

Case	p binomial distribution	np expected results	N actual results	Chi-Squared
Record High	$1 / 124$	$\mathbf{0 . 5 7 2 6}$	9	$\mathbf{1 2 4 . 0 3 7 4}$
Normal Year	$123 / 124$	$\mathbf{7 0 . 4 2 7 4}$	62	1.0084

$n p=71 \cdot p$
$\chi^{2}=\left(\frac{(N-n p)^{2}}{n p}\right)$

Degrees of Freedom $=1.000$
two bins

From the chi-squared table, the probability is more than 99%
It is more than 99% likely that 2024 does not follow the behaviour of the past 124 years
From StatTrek, a probability of 0.99999 corresponds to a chi-squared value of 24.00 . This is way beyond that.

Chi-Squared Table Probability of rejecting the null hypothesis										
dof	99\%	95\%	90\%	80\%	60\%	40\%	20\%	10\%	5\%	1\%
1	6.64	3.84	2.71	1.65	0.71	0.28	0.06	0.02	0	0
2	9.21	5.99	4.61	3.22	1.83	1.02	0.45	0.21	0.05	0.01
3	11.35	7.82	6.25	4.64	2.95	1.87	1.01	0.58	0.22	0.07
4	13.28	9.49	7.78	5.99	4.05	2.75	1.65	1.06	0.48	0.21
5	15.09	11.07	9.24	7.29	5.13	3.66	2.34	1.61	0.83	0.41
6	16.81	12.59	10.64	8.55	6.21	4.57	3.07	2.20	1.63	0.87
7	18.47	14.06	12.02	9.80	7.28	5.49	3.82	2.83	2.17	1.24

5) t-Tests (15 points)

Hector Airport has been recording temperatures in Fargo since 1942 (82 years of data). The statistics for the high temepature for the month of February are:

- mean $=42.9183 \mathrm{~F}$
- st dev $=7.0888 \mathrm{~F}$
- $\mathrm{n}=82$ (numer of data points)

In 2024, the high for February was 61.0 F
Use a student t -test to determine the probability of being warmer than 61.0 F in the month of February

Determine the t-score

$$
t=\left(\frac{61.0 F-42.9183 F}{7.0888 F}\right)=2.5507
$$

There are 81 degrees of freedom (sample size $=82$)
This t-score corresponds to a probability of 0.006
There is a $\mathbf{0 . 6 \%}$ chance of any given February having a high of 61.0F or more

167:1 odds against

Student t-Table (area of tail)

$\mathbf{d f} \backslash \mathbf{p}$	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 2 5}$	$\mathbf{0 . 0 0 5}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2 5}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 1}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2}$
$\mathbf{1}$	-636.619	-318.309	-63.6567	-31.8205	-12.7062	-6.3138	-3.0777	-1.9626	-1.3764
$\mathbf{2}$	-31.5991	-22.3271	-9.9248	-6.9646	-4.3027	-2.92	-1.8856	-1.3862	-1.0607
$\mathbf{1 0}$	-4.5869	-4.1437	-3.1693	-2.7638	-2.2281	-1.8125	-1.3722	-1.0931	-0.8791
$\mathbf{2 0}$	-3.8495	-3.5518	-2.8453	-2.528	-2.086	-1.7247	-1.3253	-1.064	-0.86
$\mathbf{3 0}$	-3.646	-3.3852	-2.75	-2.4573	-2.0423	-1.6973	-1.3104	-1.0547	-0.8538
$\mathbf{4 0}$	-3.551	-3.3069	-2.7045	-2.4233	-2.0211	-1.6839	-1.3031	-1.05	-0.8507
$\mathbf{5 0}$	-3.496	-3.2614	-2.6778	-2.4033	-2.0086	-1.6759	-1.2987	-1.0473	-0.8489
$\mathbf{6 0}$	-3.4602	-3.2317	-2.6603	-2.3901	-2.0003	-1.6706	-1.2958	-1.0455	-0.8477
$\mathbf{7 0}$	-3.435	-3.2108	-2.6479	-2.3808	-1.9944	-1.6669	-1.2938	-1.0442	-0.8468
$\mathbf{8 0}$	-3.4163	-3.1953	$-\mathbf{2 . 6 3 8 7}$	$\mathbf{- 2 . 3 7 3 9}$	-1.9901	-1.6641	-1.2922	-1.0432	-0.8461
$\mathbf{9 0}$	-3.4019	-3.1833	-2.6316	-2.3685	-1.9867	-1.662	-1.291	-1.0424	-0.8456
$\mathbf{1 0 0}$	-3.3905	-3.1737	-2.6259	-2.3642	-1.984	-1.6602	-1.2901	-1.0418	-0.8452

