
MPLAB8 and Flow Charts

One of the challenges you face with any microcontroller is how to get the program onto the chip.

One way to program a PIC chip is to use an external programmer, such as PICStart-Plus

PICStart Plys from www.Digikey.com

Once you compile your program with MPLAB (coming next), you place your PIC chip into the

programmer and select program. That easy. (This is how the boot-loader on your PIC chips was

programmed if you're curious.)

The problem with external programmers is you have to remove yor PIC chip from the board, program it,

and put it back into your board. This is inconvenient, breaks pins, takes time, etc.

A boot-loader is a small program resident on your PIC chip which runs on reset. This program waits to

see if you are trying to download a new program.

If so, it takes data sent on the serial port and writes it to program memory.

If not, it runs whatever program is in program ROM

The boot-loader on your PIC chip takes up the lower 0x300 words of program memory. On reset, it

sends the message

3 2 1 0 >

to the serial port at 9600 baud.

If it gets to zero before you hit the return button on the PC keyboard (ascii 13), it then executes

whatever program is in memory, starting at address 0x800

If you hit the return key, however (ascii 13), the boot loader clears program memory and waits to

receive a new program on the serial port at 9600 baud.

NDSU MPLAB8 and Flow Charts ECE 376

1 July 10, 2020

Note that this means you need to start your programs at 0x800

MPLAB8 and Assembler Programming

To write a program in assembler in MPLAB8

Step 1. Create a new directory. I prefer using your Z: drive with a folder Z:\ECE376\ASM\Count

Step 2. Start MPLAB8

Step 3. Click on File New Project

Project Wizard if this is a new project

This takes you through the process of starting a new project (i.e. a new program). Click OK

Device = PIC18F4620 (next)

Program Language is MPASM

NDSU MPLAB8 and Flow Charts ECE 376

2 July 10, 2020

Directory for Files: Select the directory on your Z-drive (I don't have a Z-drive so I'm using my C drive.)

If you have an ASM file, select that file. If not, leave the file name blank and continue.

Click on View Project

You should see the following:

NDSU MPLAB8 and Flow Charts ECE 376

3 July 10, 2020

Change the default to decimal. Click on Project Build Options Project

Click on MPASM anc select Decimal. This results in numbers like 100 representing 100 base 10.

NDSU MPLAB8 and Flow Charts ECE 376

4 July 10, 2020

The source file is what you compile.

If this is blank, right click on Source File and select the ASM file you wish to compile.

If you don't have an ASM file yet, select File New edit a file, and save it as .ASM

To compile your code, click on Project Bulid All (or hit key F10)

If your program compiles correctly, you get the message 'Succeed'

If there is an error in your code (such as a space in line 13 below), you will get an error message along

with a notice which line has a problem

NDSU MPLAB8 and Flow Charts ECE 376

5 July 10, 2020

Note that compiling doesn't mean your code is correct - it only means the compiler could understand it.

If you want to see what your program looks like, click on View Program Memory

Note that your program starts at address 0x800 (due to the ORG statement. This keeps it away from the

boot-loader). Also note that this is a very small program: it takes 8 lines of code (out of 32,000). A PIC

can do more.

The program is stored in the file .HEX This is a text files that contains the program in machine language

(the OP-Code above)

NDSU MPLAB8 and Flow Charts ECE 376

6 July 10, 2020

To download your code to your PIC board,

Power up your PIC board (i.e. plug it in)

Connect the serial cable to a PC

Run a terminal program, such as Hyperterminal or PIC_Flash_Tool (you might have to download

the PIC Flash Tool. It's on the ECE 376 Resources page)

http://www.bisonacademy.com/ECE376/Resources.htm

Select the USB Serial Port (COM number varies)

Select the HEX file to download.

- Note: PIC_Flash only recognizes capital .HEX You might have to rename your file if the compiler

used lower case letters

Hit RESET on your PIC board. This should results in a 321 message onthe COM Received Data

window.

When the count gets to 2, this program should send a carriage return - which clears out the old

program and waits for a new one. At that point, Program Micro lights up.

Press Program Micro. You will see the LED on RA4 blink a few times (each blink is one line in

the .HEX file) then your program is running.

NDSU MPLAB8 and Flow Charts ECE 376

7 July 10, 2020

Flow Charts and Assembler Programs

Flow Charts:

A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a

flow chart is to make the program easier to understand. Likewise, when you make a flow chart, try to

Keep it simple (less than 20 blocks), but

Keep it informative (more than one block)

It also helps if you follow a few rules:

Flow charts should start at the top of the page

The program execution should move down towards the bottom of the page

There should be a single exit point

The main symbols for flow charts are as follows:

Symbol Image Meaning

Oval Start / End of routine or program

Rectangle Function or operation

Parallelogram Input / Output

Diamond

yes

no
Decision

Ideally, your program should match up with the flow chart. Sort of like how your English term paper

should match up with the outline.

For complicated routines, it helps to write the flow chart first. For smaller programs, you can just write

the program first then draw the corresponding flow chart. This again is sort of like how you write your

English papers and the corresponding outline.

NDSU MPLAB8 and Flow Charts ECE 376

8 July 10, 2020

PIC I/O

To illustrate some programs, it will help to use some of the I/O pins on the PIC. These are pins which allow you to detect when a button is

pressed (input) or turn an LED on and off (output). We'll talk more about this later - but for now, understand that the PIC has five I/O ports:

PORTA..PORTE. These are physically connected to the pins on your PIC chip as follows:

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

+5

gnd

RD7

RD6

RD5

RD4

RC7

RD6

RD5

RC4

RD3

RD2

MCLR

RA0

RA1

RA2

RA3

RA4

RA5

RE0

RE1

RE2

+5

gnd

OSC1

OSC2

RC0

RC1

RC2

RC3

RD0

RD1

PORTA

PORTE

PORTC

PORTD

PORTB

PORTD

PORTC

PORTD

PIC18F4626

The PIC18f4620 chip has 33 I/O lines split into five ports:

PORTA PORTB PORTC PORTD PORTE

Pins 2..7 33..40 15..18, 24..26 19..22, 27..30 3

Binary Input 5 8 8 8 3

Binary Output 5 8 8 8 3

Analog Input 5 5 - - 3

Setting Up I/O Ports for Binary I/O

Three registers are associated with each port

PORTx: Defines whether the pin is 0V (0) or 5V (1)

TRISx: Defines whether the pin is input (1) or output (0)

LATx: I don't understand what the latch does. The data sheets say "Read-modify-write

operations on the LATC register read and write the latched output value for PORTC." To this, I

say "huh?" So far, ignoring the LAT registers hasn't caused any problems for me. They're

probably good for something though.

In addition, you need to initialize ADCON1 to 15

movlw 15 load the number 15 to W

movwf ADCON1 write W to ADCON1

This sets all I/O pins to binary. Some can be analog inputs as well - we'll cover this later when we get to

A/D converters.

TRISx are 8-bit registers. Each bit defines whether a given pin is input (1) or output (0). You can write

to all 8 bits at once or set and clear each bit one at a time. For example, the command

NDSU MPLAB8 and Flow Charts ECE 376

9 July 10, 2020

movlw 0x0F binary 0000 1111

movwf TRISB

sets RB0..3 to input (1) and RB4..7 to output (0). The commands

bsf TRISC,1

bcf TRISD,2

sets PORTC pin 1 (making RC1 input) and clears PORTD pin 2 (making RD2 output)

PORTx defines the value on each pin:

logic 0 is 0V

logic 1 is 5V.

When a pin is input, the logic level is defined by the external voltage applied to the pin. Writing to an

input has no affect.

When a pin is output, the logic level is defined by your program. Writing a 1 outputs 5V, writing a 0

outputs 0V.

note: Each I/O pin can source or sink up to 25mA. If you want to tie an I/O pin to 0V or 5V, you should

use a 200+ Ohm resistor rather than a wire. (Your evaluation boards use 1k resistors). If you accidently

set that I/O pin to an output opposite of the connection, the 1k resistor limits the current to 5mA, saving

the PIC. If you set the pin to input, the current should be zero (inputs have high impedance) and the 1k

resistor has no effect.

NDSU MPLAB8 and Flow Charts ECE 376

10 July 10, 2020

Example 1: Write a program which counts how many times you press RB0. Display this count on

PORTC.

Software: To count one time each button press, you need to

Keep checking RB0 until it goes high, then

Keep checking RB0 until it goes low, and

Repeat

If all you do is wait for RB0 to go high, you'll count really fast while RB0 is high rather than just once.

Count Count Count

#include <p18f4620.inc>

; --- COUNT_RB0.ASM ----

; This program counts how many times

; RB0 is pressed and displays the result

; on PORTC

; Program

 org 0x800

 clrf TRISA

 movlw 0xFF

 movwf TRISB

 clrf TRISC

 clrf TRISD

 clrf TRISE

 movlw 0x0F

 movwf ADCON1

 clrf PORTC

Loop1:

 btfsc PORTB,0

 goto Loop1

Loop2:

 btfss PORTB,0

 goto Loop2

 incf PORTC,F

 goto Loop1

 end

NDSU MPLAB8 and Flow Charts ECE 376

11 July 10, 2020

Start

Initialize Ports

Wait until RB0=0

Wait until RB0=1
(rising edge)

Increment PORTC

(falling edge)

Example 2: Design a circuit which displays a random number from 0..7 every time RB0 is pressed and

relased.

Solution: One way to do this is to use the above program but count really fast while RB0 = 1. When you

release, the resulting value will look like a random number.

Count really

fast
Display Count Count really

fast
Display Count

RB0

; --- RANDOM.ASM ----

; This program generates a random number 0..7 every time RB0 is pressed

; and sends the result to PORTC

#include <p18f4620.inc>

; Variables

DIE EQU 0

; Program

 org 0x800

 clrf TRISA

 movlw 0xFF

 movwf TRISB

 clrf TRISC

 clrf TRISD

 clrf TRISE

 movlw 0x0F

 movwf ADCON1

Main:

 btfsc PORTB,0

 incf DIE,W

 andlw 0x07

 movwf DIE

 movwf PORTC

 goto Main

end

NDSU MPLAB8 and Flow Charts ECE 376

12 July 10, 2020

RB0=1?

Start

Initialize I/O

Keep rolling

the die

Display Die

Value

yes

no

Top Down Programming:

A better way to write this program uses subroutines and top-down programming. The idea is to identify

the main functions you need to do to make the program work and make each of these a subroutine. You

then fill in each subroutine one by one to get the program to work.

For example, the previous program could be

; --- RANDOM.ASM ----

; This program generates a random number 0..7 every time RB0 is pressed

; and sends the result to PORTC

#include <p18f4620.inc>

; Variables

DIE EQU 0 ; random number located at address 0

; --- Main Routine ---

org 0x800

call Init

Main:

btfsc PORTB,0

call Roll

call Display

goto Main

; --- Subroutines ---

Init:

clrf TRISA

movlw 0xFF

movwf TRISB

clrf TRISC

clrf TRISD

clrf TRISE

movlw 0x0F

movwf ADCON1

return

Roll:

incf DIE,W

andlw 0x07

movwf DIE

return

Display:

movf DIE,W

movwf PORTC

return

end

Note that, with top-down programming,

The main routine is much easier to understand

Modifications can be made by changing one subroutine

NDSU MPLAB8 and Flow Charts ECE 376

13 July 10, 2020

RB0=1?

Start

Initialize I/O

Keep rolling

the die

Display Die

Value

yes

no

Init:

Roll:

Display:

