N D S U MPLABS and Flow Charts ECE 376

MPLABS8 and Flow Charts

One of the challenges you face with any microcontroller is how to get the program onto the chip.

One way to program a PIC chip is to use an external programmer, such as PICStart-Plus

PICStart Plys from www.Digikey.com

Once you compile your program with MPLAB (coming next), you place your PIC chip into the
programmer and select program. That easy. (This is how the boot-loader on your PIC chips was
programmed if you're curious.)

The problem with external programmers is you have to remove yor PIC chip from the board, program it,
and put it back into your board. This is inconvenient, breaks pins, takes time, etc.

A boot-loader is a small program resident on your PIC chip which runs on reset. This program waits to
see if you are trying to download a new program.

If so, it takes data sent on the serial port and writes it to program memory.

If not, it runs whatever program is in program ROM

The boot-loader on your PIC chip takes up the lower 0x300 words of program memory. On reset, it
sends the message
3210 >
to the serial port at 9600 baud.
If it gets to zero before you hit the return button on the PC keyboard (ascii 13), it then executes
whatever program is in memory, starting at address 0x800

If you hit the return key, however (ascii 13), the boot loader clears program memory and waits to
receive a new program on the serial port at 9600 baud.

1 July 10, 2020

N DS U MPLABS and Flow Charts ECE 376

Note that this means you need to start your programs at 0x800

MPLABS and Assembler Programming

To write a program in assembler in MPLABS

Step 1. Create a new directory. I prefer using your Z: drive with a folder Z:\ECE376\ASM\Count
Step 2. Start MPLABS

Step 3. Click on File New Project

Project Wizard if this is a new project

“ MPLAB IDE ¥8.10

Fle Edit View | Project Debugger Programmer Tools Configur

| D& M |
T, .
J Checksum:
Open. ..
Close »
m Sel Active Project 3
Guickbuild {no . asm File)
Clearn
Build Configuration 3
Build Options. .. 3

Save Frojeck

Save Project As,,,

add Files ko Project, .,

add [Mew File to Praject, ..
Remove File From Proiect 3

This takes you through the process of starting a new project (i.e. a new program). Click OK

Device = PIC18F4620 (next)

Device:

FIC18F4620)

Program Language is MPASM

2 July 10, 2020

N DS U MPLABS and Flow Charts

ECE 376

x
Step Two: r‘L
Select a language toolsuite Ejé}
Active Toolsuite: IMiClDChip MPASH Toolzuite j
r~ Toolsuite Contents
y ribler [m)]
MPLIME Object Linker [mplink. exe
MPLIB Librarian [mplib.exe)
r~ Location
Browse... |
Help! by Suite |sn't Listed! | [~ Show allinstalled toolsuites
< Back I Mext » I Cancel | Help

Directory for Files: Select the directory on your Z-drive (I don't have a Z-drive so I'm using my C drive.)

Project Wizard
Step Three: Eﬁ‘

Create a new project, or reconfigure the active project?

IE: YECE37E_18F46200A S MAB link B link. Browge... I

’75' Create New Project File

If you have an ASM file, select that file. If not, leave the file name blank and continue.

Click on View Project

% CopyBC - MPLAB IDE v8.10

File Edit | iew Project Debugger Progr

D B Project
J Qukpuk
J e Toolbars 4

Pl Registers
I_ Call|Stack
—

You should see the following:

July 10, 2020

NDSU

MPLABS and Flow Charts

Jake - MPLAB IDE ¥8.10

File Edit ‘iew Project Cebugger

Prograrnmer

Tools

Configure Window Help

| DEE i me | Sas 7

= L1 Jake.mcp*
E|[:| Source Files
- CountC,asm

[Header Files

2 Library Files
(3 Linker Scripk

J IDehug 'l&gh =

EEe = | checksum: 0x035;

#include <plBf4620.1inc>
; Btart of code:
org 0x800
clrf TRIEC
clrf PORTC
movlw 0x0F
movwf ADCONI1
Loop:
incf PORTC, F
goto Loop
end

Change the default to decimal. Click on Project Build Options Project

% Clock - MPLAB IDE ¥8.10

Filz Edit Wiew | Project Debugger Programmer Tools Configure Window He

Project Wizard...

| D@ = |

=

Cloch

Mew. ..

Cpen...

Close

Set Ackive Project

Guickbuild ne , asm file)

Clean

Expart Makefile
Build All

Make

Build Configuration
Build Opti

CtrHF10
Fi0

Clock.asm i

Click on MPASM anc select Decimal.

Directories
MPASM/CT7/C18 Suite

Generate Command Line

Save Project

Sawa Praiack fc

This results in numbers like 100 representing 100 base 10.

M Euild Options For Project "Clock.mcp™ A |
Custom Build | Trace
MPASH Azsembler | MPLIME Linker
Categories: IGeneraI j
Default Radix
[~ Disable case senaitivity {~ Hexadecimal
& Decimal
= [Ext. mode now or “suite! tab)] € Octal

[~ Macro Definitions

July 10, 2020

N DS U MPLABS and Flow Charts ECE 376

The source file is what you compile.
- If this is blank, right click on Source File and select the ASM file you wish to compile.
+ If you don't have an ASM file yet, select File New edit a file, and save it as .ASM

To compile your code, click on Project Bulid All (or hit key F10)

W Blink - MPLAB IDE v8.10

File Edit Yiew | Project Debugger Programmer Tools Config
J 02 | Project Wizard, ..

Tew, ..
J Checksum:
Open...
Close 3
Set Active Project 3

Quickbuild) asmm file)

Clean
Export Makefile
Build All Chrl+F10

Make Fi0
Build Configuration 3
Build Options. .. 3

If your program compiles correctly, you get the message 'Succeed'

Build | “ersion Control I Find in Files I

Debug build of project "CAECE376_18F462 MASMEBlink\Blink.mop' started.
Freprocessor symbaol " DEBUG' is defined.
Wed Aug 2010:14:30 2014

take: The target "CAECESVE_18F462WASKElInk\Blink.o" is out of date.
Executing: "Ch\Program FilesikicrochiphdPASK SuitettdPASKWIN exe” /g /ol 8F4620 "Blink.asm" A"Blink.lst" /e"Blink er" /d_DEBUG=1
Loaded CAECE37E_18F4E20NASMBlInkBlink cod.

Debug build of project "CAECE376_18F462MASMElInk\Blink.mop' succeeded.
Freprocessor symbal __DEBUG' is defined.
Wed Aug Z070:74:31 2014

BUILD SUCCEEDED

If there is an error in your code (such as a space in line 13 below), you will get an error message along
with a notice which line has a problem

5 July 10, 2020

N DS U MPLABS and Flow Charts ECE 376

% Jake - MPLAB IDE ¥8.10

File Edit View Project Debugger Programmer Tools Configure ‘Window Help

| DEH| i mE SGAB R bebwy - SEDBO | S
m Il C:\ECE376_18F4620%ASM" CountC.asm

Build |Version Controll Find in Filesl 1 #include <plAf4620.inc>

J Checksum: 0x03ba

=10l %]

[*]

Debug build of project "C\ECE 376, [i start of code:
Freprocessor symbol " DEBUG! 3 org 0xz800
Fri Jan 22 12:35:45 2016 4 clrf TRIZC
5 clrf FORTC

Edake:tThel}grE;t "C:\EC'ES?EKJ_BP & wow lw Ox0F

xecuting: "ChProgram FilesiMicro
\Waming[205] CAECE376_18F4620 | movwE ADCONL
\Warning[207] CAECE376_18F 4620 |8 Loop:
Eror122] CAECE376_18F46200a% (9 incf PORTC,F
Halting build on first failure as requef10 goto Loop

: : 11 ehad

Debug build of project 'TANECE37E,
Freprocessor symbol __DEBUG!
Fri Jan 22 12:35:46 2016
BUILD FAILED

Note that compiling doesn't mean your code is correct - it only means the compiler could understand it.

If you want to see what your program looks like, click on View Program Memory

:;-]ake - MPLAB IDE ¥8.10 - Program Memory

Filz Edit | Wiew Project Debugger Programmer Tools Configure Window Help

0 = v ot Z || [Debun o S HBO| S | Checksum: 0xfb31

Okt -

— '
1 Rl Reisters Bf4E20. ine> Line Address Cpoode Label Dizassenbly
= i odea: 1020 a7F 6 FFFF HOF
] Disassemnbly Listing 1021 n7rs FEFF Hop
4 i ac 102z O7FA FFFF HOF

1023 a7FC FFFF HOF

S e Falslitis TC 1024 O7FE FFFF HOF
& Flash Data aF 0s0o0 CLREF TRISC, ACCESS
7 Hardware Stack CcoNl 1026 080z GLEZ CLRF PORTC, ACCESS
g LCD Pixel 1027 0604 OEQF MOVLY Oxf
g Locals T E 1028 0806 EECL MOVWE ADCCHL, ACCESS

Memary, ’ 1029 0805 zasz Loop INCF FORTC, F, ACCESS
10 Program Memory 1030 ag0L EF04 GOTOD Loop
i1 SFR. | Paripherals 1031 nsnc FOO4 NOP

Special Function Registers 103z OS0E FFFF NOF

\wakch 1033 0s10 FFFF HOF

1054 nEiz FFFF MoF
1 Memory Usage Gauge 1035 0514 FFFF HOF

Note that your program starts at address 0x800 (due to the ORG statement. This keeps it away from the
boot-loader). Also note that this is a very small program: it takes 8 lines of code (out of 32,000). A PIC
can do more.

The program is stored in the file . HEX This is a text files that contains the program in machine language
(the OP-Code above)

6 July 10, 2020

N DS U MPLABS and Flow Charts ECE 376

TR TR - P PP,

i . 020000040000FA

= :10030000926A936A940A950A966A150EC1AEGZ2AFY
= :04031000837EF01F0BE

4 :00000001FF

15

To download your code to your PIC board,
« Power up your PIC board (i.e. plug it in)

+ Connect the serial cable to a PC

+ Run a terminal program, such as Hyperterminal or PIC_Flash_Tool (you might have to download
the PIC Flash Tool. It's on the ECE 376 Resources page)

http://www.bisonacademy.com/ECE376/Resources.htm

== GUI of super amazing awesomeness Rev 1.2

File Inskructions

COM Parts COM Send File COM Received Data
Parts Available SelectHewFie.. | |CAECEI7EMASM\Count HEX AeueieuRois
|E0mmunications Part [COM1 Lock File Path

LIS | Port [CORE]

Auto Catch Reset
Must Complete the following before transfer:

Waiting for file ta be selected...
Complete: Micro Reset/Cleared

Programming =

[Connect To Port]

Status Dialog

Made by Mathan Zimmerman
LISE Serial Port [COMBE) Selected
Connection Established

File has been selected -
File haz been selected Data Storage Options

Micro Reset Success, Code Cleared Clear Data] [To Cliphoard

« Select the USB Serial Port (COM number varies)
- Select the HEX file to download.

- Note: PIC_Flash only recognizes capital . HEX You might have to rename your file if the compiler
used lower case letters

« Hit RESET on your PIC board. This should results in a 321 message onthe COM Received Data
window.

+ When the count gets to 2, this program should send a carriage return - which clears out the old
program and waits for a new one. At that point, Program Micro lights up.

+ Press Program Micro. You will see the LED on RA4 blink a few times (each blink is one line in
the .HEX file) then your program is running.

7 July 10, 2020

N DS U MPLABS and Flow Charts ECE 376

Flow Charts and Assembler Programs

Flow Charts:

A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a
flow chart is to make the program easier to understand. Likewise, when you make a flow chart, try to

Keep it simple (less than 20 blocks), but

Keep it informative (more than one block)

It also helps if you follow a few rules:
Flow charts should start at the top of the page
The program execution should move down towards the bottom of the page

There should be a single exit point

The main symbols for flow charts are as follows:

Symbol Image Meaning

Oval @ Start / End of routine or program

'

Rectangle Function or operation

Parallelogram Input / Output

Diamond Decision

Ideally, your program should match up with the flow chart. Sort of like how your English term paper
should match up with the outline.

For complicated routines, it helps to write the flow chart first. For smaller programs, you can just write
the program first then draw the corresponding flow chart. This again is sort of like how you write your
English papers and the corresponding outline.

8 July 10, 2020

NDSU

MPLABS and Flow Charts ECE 376

PIC1/O

To illustrate some programs, it will help to use some of the I/O pins on the PIC. These are pins which allow you to detect when a button is
pressed (input) or turn an LED on and off (output). We'll talk more about this later - but for now, understand that the PIC has five I/O ports:
PORTA..PORTE. These are physically connected to the pins on your PIC chip as follows:

—— MCLR RB7 |—
—— RAO RB6 |—
— RAT RB5 ——
—— RA2 RB4 |
PORTA| —— RA3 RB3 —— PORTE
——1 RA4 RB2 |
—— RAS RB1 |—
— RBO ——
— PIC18F4626 55—
JE— gnd
— 45 RD7 —
— gnd RD6 ——
— 0SsCt RD5~> PORTD
—— 0sc2 RD4 —
—1 RCO RC7 F—
— RCf RD6 ——
PORTC<~RC2 RD5~> PORTC
—1 RC3 RC4
— RD RD3 ——
PORTD (| A5 Abs —) PORTD
The PIC18f4620 chip has 33 I/O lines split into five ports:
PORTA PORTB PORTC PORTD PORTE
Pins 2.7 33..40 15..18,24..26 | 19..22,27..30 3
Binary Input 5 8 8 8 3
Binary Output 8 8 3
Analog Input 5 - - 3

Setting Up 1/0O Ports for Binary I/O

Three registers are associated with each port
« PORTx: Defines whether the pin is OV (0) or 5V (1)
« TRISx: Defines whether the pin is input (1) or output (0)
+ LATx: Idon'tunderstand what the latch does. The data sheets say "Read-modify-write
operations on the LATC register read and write the latched output value for PORTC." To this, I

say "huh?" So far, ignoring the LAT registers hasn't caused any problems for me. They're
probably good for something though.

In addition, you need to initialize ADCONI to 15

movlw 15
movwf ADCON1

load the number 15 to W
write W to ADCONI

This sets all I/O pins to binary. Some can be analog inputs as well - we'll cover this later when we get to
A/D converters.

TRISx are 8-bit registers. Each bit defines whether a given pin is input (1) or output (0). You can write
to all 8 bits at once or set and clear each bit one at a time. For example, the command

9 July 10, 2020

N DS U MPLABS and Flow Charts ECE 376

movlw OxOF binary 0000 1111
movwf TRISB

sets RB0..3 to input (1) and RB4..7 to output (0). The commands

bsf TRISC, 1
bef TRISD, 2

sets PORTC pin 1 (making RC1 input) and clears PORTD pin 2 (making RD2 output)

PORTX defines the value on each pin:
logic 0 is OV
logic 1is 5V.

When a pin is input, the logic level is defined by the external voltage applied to the pin. Writing to an
input has no affect.

When a pin is output, the logic level is defined by your program. Writing a 1 outputs 5V, writing a 0
outputs OV.

note: Each I/O pin can source or sink up to 25mA. If you want to tie an I/O pin to OV or 5V, you should
use a 2004+ Ohm resistor rather than a wire. (Your evaluation boards use 1k resistors). If you accidently
set that I/O pin to an output opposite of the connection, the 1k resistor limits the current to SmA, saving
the PIC. If you set the pin to input, the current should be zero (inputs have high impedance) and the 1k
resistor has no effect.

10 July 10, 2020

N D S U MPLABS and Flow Charts ECE 376

Example 1: Write a program which counts how many times you press RB0. Display this count on
PORTC.

Software: To count one time each button press, you need to
+ Keep checking RBO until it goes high, then
- Keep checking RBO until it goes low, and
- Repeat

If all you do is wait for RBO to go high, you'll count really fast while RBO is high rather than just once.

o

? T T

Count Count Count

#include <pl8f4620.inc>

—-—— COUNT_RBO.ASM ———-—
This program counts how many times
RBO is pressed and displays the result

Ne Ne Ne N

on PORTC
Start
; Program
org 0x800 Y
clrf TRISA Initialize Ports
movlw OxFF
movwf TRISB -
clrf TRISC
clrf TRISD Y
clrf TRISE Wait until RB0=0
movlw O0xOF (falling edge)
movwf ADCON1
clrf PORTC
y
Loopl: Wait until RB0O=1
btfsc PORTB, 0 (rising edge)
goto Loopl
Loop2:
btfss PORTB, 0 Y
goto Loop2
incf ©PORTC,F Increment PORTC|
goto Loopl
end

11 July 10, 2020

NDSU

MPLABS and Flow Charts

ECE 376

Example 2: Design a circuit which displays a random number from 0..7 every time RBO is pressed and

relased.

Solution: One way to do this is to use the above program but count really fast while RBO = 1. When you
release, the resulting value will look like a random number.

RBO
Countreally pjsplay Count
fast
; ——— RANDOM.ASM —--——--

Countreally pjigplay Count
fast

; This program generates a random number 0..7 every time RBO is pressed
; and sends the result to PORTC

#include

<pl8f4620.inc>

; Variables

DIE EQU

; Program

0

org 0x800

clrf
movlw
movwf
clrf
clrf
clrf
movliw
movwf

Main:
btfsc
incf
andlw
movwf
movwf
goto

end

TRISA
O0xXFF
TRISB
TRISC
TRISD
TRISE
0x0F
ADCON1

PORTB, 0
DIE, W
0x07
DIE
PORTC
Main

Start

/

Initialize 1/10

no
— RB0O=1?

es
'y

Keep rolling
the die

/

Display Die
Value

12

July 10, 2020

NDSU

MPLABS and Flow Charts

ECE 376

Top Down Programming:

A better way to write this program uses subroutines and top-down programming. The idea is to identify
the main functions you need to do to make the program work and make each of these a subroutine. You

then fill in each subroutine one by one to get the program to work.

For example, the previous program could be

; ——— RANDOM.ASM —-——-—

14

; and sends the result to PORTC

#include <pl8f4620.inc>

; Variables

DIE EQU

0

; ——- Main Routine --—-

Main:

org 0x800
call Init

btfsc PORTB, 0
call Roll
call Display
goto Main

; ——— Subroutines —-—-

Roll:

Display:

Note that, with top-down programming,

clrf TRISA
movlw OxFF
movwf TRISB
clrf TRISC
clrf TRISD
clrf TRISE
movlw OxOF
movwf ADCON1
return

incf DIE, W
andlw 0x07
movwf DIE
return

movf
movwf
return

DIE, W
PORTC

end

This program generates a random number 0..7 every time RBO is pressed

; random number located at address 0

« The main routine is much easier to understand

+ Modifications can be made by changing one subroutine

Start

Init: 1]

Initialize 1/0

A

no

— RB0=1?

Roll: ¢Y®°

Keep rolling
the die

Py

L

Display: y

Display Die
Value

13

July 10, 2020

