
Binary Outputs and Timing
Each of the I/O pins on a PIC can be inputs or ourputs

As an input, the pin is high impedance (meaning it is passive and draws very little current). If you

apply 0V to that pin, it is read as logic 0, 5V is logic 1

As an output, the pin is active. It will try to force the output pin to 0V (logic 0) or 5V (logic 1) A

PIC chip has its limits: it is limited to sourcing or sinking 25mA (max).

Note: To run these programs, make sure the default in MPLAB is decimal. Check this by going to

Project - Build Options - Project

MPASM: Decimal

NDSU Binary Output & Timing ECE 376

1 July 11, 2020

Binary Outputs: Hardware

Problem: Connect an 8-Ohm speaker to your PIC board.

Solution #1: You can't connect an 8-Ohm speaker directly: it draws more than 25mA at 5V

I =
5V

8Ω
= 625mA

(Actually, you can connect an 8-ohm speaker to an I/O pin. It tends to burn out that I/O pin, however.)

To limit the current, add a resistor in series:

Rtotal =
5V

25mA
= 200Ω

Connecting and 8 Ohm Speaker toa PIC: Current is limited to 25mA

Solution #2: If you want a really loud speaker, use the H-bridge in your lab kit (and a diferent speaker

rated at 3W or more...)

+5V0V+5V

RC0

RC1

PIC Board

5W Speaker

Dual H-Bridge

A

B

1 2 3 4

C

D

This H-bridge allows you to drive loads

Up to 46VDC, and

Up to 3A (max), 2A (continuous)

NDSU Binary Output & Timing ECE 376

2 July 11, 2020

The inputs (RC0 and RC1) control the votlage Vab

RC0

(IN4)

RC1

(IN3)

Vab

0 0 0V

0 1 -3.27V

1 0 +3.27V

1 1 0V

(note: you don't get +5V or -5V out due to a slight drop across the transistors in the H-bridge)

Software & Timing

Count on PORTC (counts really fast)

 #include <p18f4620.inc>

; Start of code:
 org 0x800
 clrf TRISC
 clrf PORTC

 movlw 0x0F
 movwf ADCON1
Loop:
 incf PORTD,F
 goto Loop
 end

Signal on RD0: Loop Time = 301ns (3 clocks)

NDSU Binary Output & Timing ECE 376

3 July 11, 2020

Problem: Play 261Hz on a speaker

Solution: You can't connect a speaker to a constant (DC) source: all that does is push the cone out. To

make noise, you need to move the cone back and forth to create pressure waves (i.e. sound). From the

PIC's standpoint, you need to output a square wave on RC0: the frequency of the square wave is the

frequency of the should you hear.

From before, if you want to play the note C4 (261Hz), you need to output a square wave with a frequency

of 261Hz on RC0:

Clocks =
10,000,000

2xHz

At 261Hz

Clocks = 19,157

Ideally, there should be 19,157 clocks between each time you toggle

RC0.

To do that, add a wait loop:

Wait:
movlw 19
movwf CNT1

Loop1:
movlw 100
movwf CNT0

Loop0:
nop
nop
nop
nop
nop
nop
nop
decfsz CNT0,F
goto Loop0

decfsz CNT1,F
goto Loop1

 return

Note the following:

The wait routine (Wait) is a little off. It should wait 19,157 clocks. It actually waits

Clocks = (10*100 + 5) * 19 + 5

 = 19,100 (0.29% low)

Pin RC0 is always outputing a square wave. It's kind of annoying.

On the oscilloscope, you can check the frequency:

NDSU Binary Output & Timing ECE 376

4 July 11, 2020

Signal on RC0 for 260.7Hz (loop time = 19,157 clocks = 1.9157ms)

One Key Piano: Suppose instead you want to play this note only

when you press RB0. One way to do this is to check if RB0 is

pressed:

If RB0 = 1 (button pressed), toggle RC0

Otherwise, leave RC0 alone

This results in a square wave appearing on RC0 only when RB0 is

pressed.

; This program toggles RC0 at 261 Hz (note C4)

#include <p18f4620.inc>

; Variables

CNT0 EQU 1
CNT1 EQU 2

; Program

org 0x800

call Init

Loop:

btfsc PORTB,0

 call Toggle

call Wait

goto Loop

(same as before)

NDSU Binary Output & Timing ECE 376

5 July 11, 2020

Note that if RB0 is not pressed, it skips over the toggle command.

4-Key Piano: Finally, design a 4-key piano: Whan you press RB0..RB3, the note should be:

RB0: 261 Hz (C4)

RB1: 293 Hz (D4)

RB2: 329 Hz (E4)

RB3: 349 Hz (F4)

There are several ways to do this. One way is to use four wait loops: one for each frequency. If you get

fancy, you can also write a single wait loop and adjust the period - but why get too fancy.

The number of clocks to wait is

Clocks =
10,000,000

2 x Hz

The clocks for each wait loop are then:

Hz 261 293 329 349

Clocks (ideal) 19,157.09 17,064.85 15,197.57 14,326.65

A 239 243 253 239

B 8 7 6 6

Clocks (actual) 19,165 17,050 15,215 14,375

; --- Piano2.asm ----
; This program plays notes C4 / D4 / E4 / F4

#include <p18f4620.inc>

; Variables

CNT0 EQU 1
CNT1 EQU 2

; Program
org 0x800
call Init

Loop:

movf PORTB,W

btfss STATUS,Z

call Toggle

btfsc PORTB,0

call Wait_C4

btfsc PORTB,1

call Wait_D4

btfsc PORTB,2

call Wait_E4

btfsc PORTB,3

call Wait_F4

goto Loop

NDSU Binary Output & Timing ECE 376

6 July 11, 2020

Start

Initialize
Ports

Any

Button
no

yes

toggle RC0

Button?
RB0 RB1 RB2 RB3

Wait (C4) Wait (D4) Wait (E4) Wait (F4)

The wait routines set the delay for each note:

Wait_D4: ; Wait 17,064 clocks
movlw 7
movwf CNT1

Loop1:
movlw 243
movwf CNT0

Loop0:
nop
nop
nop
nop
nop
nop
nop
nop
decfsz CNT0,F
goto Loop0

decfsz CNT1,F
goto Loop1

 return

Output on RC0 for D4 (293.00Hz ideally)

NDSU Binary Output & Timing ECE 376

7 July 11, 2020

Wait_E4: ; Wait 15,197 clocks
movlw 6
movwf CNT1

Loop1:
movlw 253
movwf CNT0

Loop0:
nop
nop
nop
nop
nop
nop
nop
nop
decfsz CNT0,F
goto Loop0

decfsz CNT1,F
goto Loop1

 return

Output on RC0 for note E4 (329.00Hz ideally)

NDSU Binary Output & Timing ECE 376

8 July 11, 2020

Wait_F4: ; Wait 14,326 clocks
movlw 6
movwf CNT1

Loop1:
movlw 239
movwf CNT0

Loop0:
nop
nop
nop
nop
nop
nop
nop
nop
decfsz CNT0,F
goto Loop0

decfsz CNT1,F
goto Loop1

 return

Signal on RC0 for F4 = 349Hz (14,326 clocks / cycle = 1.4326ms)

NDSU Binary Output & Timing ECE 376

9 July 11, 2020

