
MPLABX and PICC18
Note:

If you have adminstrative rights, I'd recommend using MPLAB 8.xx It's a lot more friendly and
doesn't hide your .hex file. If MPLAB 8 does't work (might not work on Windows 8), you're stuck
with MPLABX.

For step-by-step instructions on how to compile and download a program using MPLAB and
PICC18, please refer page 2.

If you're not familiar with C or forgot most of what you learned in ECE 173, don't worry. We'll
start with fairly simple C programs and build from there.

If you want to get an A or B in this course, please do the homework and test it on your PIC board.
Writing programs on paper (or copying someone else's code) isn't the same as trying to get it to
work in practice. Besides, this course is a lot more fun if you can see your devices actually
working.

Background

Back in the 1960's, compters were programmed in machine code. The operator would set switches
according to the binary code corrsponding to each line of code, push a button, and set the switches for the
next line of code.

Machine code is very cryptic. A program for a PIC which counts on PORTC looks like the following:

060000000A128A11F92F1B
0E0FF20083160313870183128701870AFE2FDF
00000001FF

Assembler is much superior to machine code. Semi-meaningful names represent the valid machine
operations, as described in the previous notes. The previous code would look like the following

_main
 bsf STATUS, RP0
 bcf STATUS, RP1

clrf TRISC
bcf STATUS, RP0
clrf PORTC

_loop incf PORTC,F
goto _loop

This is a lot easier to understand than the machine code. It is still very cryptic, however. In addition,
assembler has a limited set of commands. The PIC we're using, for example, can

Add, Subtract

Load, Store

Shift left, shift right, and

Do boolean operations.

Using these limited instructions, you can do anything, such as implement a Fourier transform. The
algorithm will be very cryptic, however.

C is a high-level assembler which has some useful functions, such as

multiply, divide,

NDSU MPLABX and PICC18 ECE 376

JSG - 1 - rev February 20, 2015

arrays

for next, do while loops

if statements

Procedure for Compiling a C Program in MPLABX

Step 1: Start with a working program. Typically, open a zip file and copy all of its contents to your
z-drive. I'd recomment something like

z:\ECE376\Clock

Step 1. Create a new directory. I prefer using your Z: drive with a folder Z:\ECE376\ASM\Count

Step 2. Start MPLABX

Step 3. Click on File New Project

Select Microchip - Stand Alone Project. Click Next

Select PIC18 and PIC18F4620

hardware Tool: Select ICD2 (doesn;t really matter for this one)

NDSU MPLABX and PICC18 ECE 376

JSG - 2 - rev February 20, 2015

Select Hi-Tech PICC18. If this doesn't show up, you need to install the C compiler (install MPLABX
first then run the C compiler installer)

Click on Brouse and select the directory for your code (usually on your z: drive).

Note: It doesn't work well if you use your desktop - that meny is too burried for the compiler

Here, I'm using my c: directory. You 'll probably use something like

z:/ECE376/Count

Finish. At this point, your new project should be ready to go

NDSU MPLABX and PICC18 ECE 376

JSG - 3 - rev February 20, 2015

Now, select the C file you wish to compule. Right click on Source Code and add an existing file

The file I included is CountABC.C. Your project should look something like this (with the project name
and file name possibly different)

Finally, you need to offset your code by 0x300 for the boot-loader to work. To do this, click on

Run - Set Project Configuration

Select Linker -

NDSU MPLABX and PICC18 ECE 376

JSG - 4 - rev February 20, 2015

Change the option category to Additional Options.

Make the Code Offset 0x300 and

Click Apply

You shoul d now be able to compile your code. To do this, click on the hammer (just below Tools). This
will build the project and create the hex file.

Note on homework: If you copy the Output message when you compile, that's proof enough that your
code compiled. It also tells you how large your code was, its memory usage, etc.

NDSU MPLABX and PICC18 ECE 376

JSG - 5 - rev February 20, 2015

For your convenience, MPLABX places the .HEX file 4 subdirectories below the main one (why?). It
will be under

Count.X / dist / default / production / Count.X.Production.HEX

note: If your code worked yesterday and doesn't work today, it's probably you forgot to offset your code
by 0x300.

This also creates some files

Clock.lst

This shows how your C code converts to assembler. A section looks like the following

NDSU MPLABX and PICC18 ECE 376

JSG - 6 - rev February 20, 2015

Clock.hex

This is the machine code you download to your processor
:04000000C7EF7FF0D7
:10FF8E00000E926E000E936E000E946E000E956E25
:10FF9E00000E966E0001FF6F0F0EC16E0001FF5135
:10FFAE00000E806E000E816E000E826E000E836E4D
:10FFBE00000E846E000E00010001FD6F000E0001A8
:10FFCE00FE6F010E00010001FD2500010001FD6F15
:10FFDE00000E00010001FE210001FE6FFDC083FF37
:10FFEE00836601D001D002D08228826EEAD700EF5C
:02FFFE0000F011
:00000001FF

Note that the reason we like C so much is

It compiles to assembler fairly directly

Meaning it is efficient, and

C has things like multiply, divide, loops, arrays.

If you don't remember C that much, don't worry: we don't use many of the features of C. I personally
treat C like assembler - only with a multiply command. Another theme you'll see is you can do just about
anything with an IF statement. The code may not be the most efficient - but as long as it's understandable
and works, it's usually good enough. If you really want efficiency, use assembler.

NDSU MPLABX and PICC18 ECE 376

JSG - 7 - rev February 20, 2015

C Language Summary

Character Definitions:

Name bits range
char 8 -128 to +127
unsigned char 8 0 to 255
int 16 -32,768 to +32,767
unsigned int 16 0 to 65,535
long 32 -2,147,583,648 to +2,147,483,647
unsigned long 32 0 to 4,294,967,295
float 32 3.4e-38 to 3.4e38
double 64 1.7e-308 to 1.7e+308
long double 80 3.4e-4932 to 3.4e+4932

Arithmetic Operations

Name Example Operation
+ 1 + 2 = 3 addition
- 3 - 2 = 1 subtraction
* 2 * 3 = 6 multiplication
/ 6 / 3 = 2 division
% 5 % 2 = 1 modulus
++ A++ use then increment

++A increment then use
-- A-- use then decrement

--A decrement then use
& 14 & 7 = 6 logical AND
| 14 | 7 = 15 logical OR
^ 14 ^ 7 = 9 logical XOR
>> 14 >> 2 = 3 shift right. Shift in zeros from left.
<< 14 << 2 = 56 shift left. Shift zeros in from right.

Defining Variables:

int A; A is an integer
int A = 3; A in an integer initialized to 3.
int A, B, C; A, B, and C are integers
int A=B=C=1; A, B, and C are integers, each initialized to 1.
int A[5] = {1,2,3,4,5}; A is an array initialized to 1..5. Note: A[0]=1.

Arrays:

int R[52]; Save space for 52 integers
int T[2][52]; Save space for two arrays of 52 integers.

note: The PIC18F4626 only has 3692 bytes of RAM, so don't get carried away with arrays.

General C Commands:

Conditional Expressions:
! not. !PORTB means the compliment of PORTB.
= assignment
== test if equal.

NDSU MPLABX and PICC18 ECE 376

JSG - 8 - rev February 20, 2015

> greater than
< less than
>= greater than or equal
!= not equal

IF Statement
if (condition expression)
{ statement or group of statements
 }

example: if PortB pin 0 is 1, then increment port C:
if (RB0==1) {
 PORTC += 1;
 }

IF - ELSE Statements
if (condition expression)
{ statement or group of statements
 }
else {
 alternate statement or group of statements
 }

Example: if PortB bit 0 is 1, then increment port C, else decrement port C:
if (RB0==1)
 PORTC += 1;
 }
else
 PORTC -= 1;
 }

SWITCH (CASE)
switch(value)
{
 case value: statement or group of statements
 case value: statement or group of statements
 defacult: statement or group of statements
 }

WHILE LOOP
while (condition is true) {
 statement or group of statements
 }

NDSU MPLABX and PICC18 ECE 376

JSG - 9 - rev February 20, 2015

DO LOOP
do {
 statement or group of statements
 } while (condition is true);

FOR-NEXT
for (starting value; do while true; changes) {
 statement or group of statements
 }

Infinite Loop
while(1) {
 statement or group of statements
 }

note: Zero is false. Anything other than zeros is true. while(130) also works for an infinite loop.

Subroutines in C:

To define a subroutine, you need to

Declare how this subroutine is called (typically in a .h file)

Declare what the subroutine is.

The format is

returned_variable_type = subroutine_name(passed_variable_types).

Example: Write a subroutine which returns the square of a number:
// Subroutine Declarations

int Square(int Data);

// Subroutines

int Square(int Data) {
 int Result;
 Result = Data * Data;
 return(Result);
 }

NDSU MPLABX and PICC18 ECE 376

JSG - 10 - rev February 20, 2015

Execution Speed for Character Definitions:

Test: Compile the following program:
unsigned char A, B, C;
A = 4;
B = 8;
do {
 C = A * B;
 RC0 = !RC0; // used to determine # of instructions
 } while (1>0);

Measure the time it takes for RC0 to toggle and compute the number of cycles by dividing by 200ns.

Variable Type for Multiplication Size of Code
(lines)

of clock
cycles to
execute

unsigned char addition 21 6

unsigned char 37 45

unsigned int 56 70

unsigned long int 112 290

float 198 472

double

long double

NDSU MPLABX and PICC18 ECE 376

JSG - 11 - rev February 20, 2015

Details for C: (Optional)

Memory Mapping with Hi-Tech C:

With embedded systems, you care where your RAM variables are assigned. PORTA, for example, needs
to be located at RAM address 0xF80 since this address is tied to hardware. How you make this
assignment is non-starndard C and varies from compiler to compiler. For Hi-Tech C, this is done as
follows for PORTA to PORTC:

extern volatile near unsigned char PORTC @ 0xF82;
extern volatile near unsigned char PORTB @ 0xF81;
extern volatile near unsigned char PORTA @ 0xF80;

Bits are assigned as well:
extern volatile near bit RA0 @ ((unsigned)&PORTA*8)+0;
extern volatile near bit RA1 @ ((unsigned)&PORTA*8)+1;
extern volatile near bit RA2 @ ((unsigned)&PORTA*8)+2;
extern volatile near bit RA3 @ ((unsigned)&PORTA*8)+3;

Such statements are part of the file PIC.H, which tell the compiler where PORTA, RA3, etc. are located.

Standard C Code:

Each line of C typically looks like the following:
result = function of previously defined variables

For example, the following is a valid mathematical expression but not valid C
X + 3 = 2*Y;

To make this a valid instruction in C. you need to rewrite it
X = 2*Y - 3;

Parenthesis are also useful (and never hurts). Over-use is not a bad thing if it makes is clearer what the
order of operations is.

X = (2*Y) - 3; // multiply by 2 first then subtract 3
X = 2 * (Y - 3); // subtract 3 first then multiply by 2

Standard C Code Structure

NDSU MPLABX and PICC18 ECE 376

JSG - 12 - rev February 20, 2015

So that others can modify your code more easily, a standard structure is to be used. This places all code
in the following order:

//----------------------------------
// Program Name
//
// Author
// Date
// Description
// Revision History
//---------------------------------

// Global Variables

// Subroutine Declarations
#include <pic.h> // where PORTB etc. is defined

// Subroutines
void interrupt IntServe(void){} // holder for interrupts (see week 8)

// Main Routine

void main(void)
{

 TRISA = 0; // all pins on PORTA are output
 TRISB = 0xFF; // all pins on PORTB are input
 TRISC = 0; // all pins on PORTC are output
 TRISD = 0; // all pins on PORTD are output
 TRISE = 0; // all pins on PORTE are output
 ADCON1 = 15; // PORTA and PORTE are binary (vs analog)
 PORTA = 1; // initialize PORTA to 1 = b00000001
 PORTC = 3; // initialize PORTC to 3 = b00000011

 while(1) {
 PORTD = PORTB; // copy whatever is input to PORTB to PORTD
 };
 }

// end of program

NDSU MPLABX and PICC18 ECE 376

JSG - 13 - rev February 20, 2015

Address Register
Name

Bit

7 6 5 4 3 2 1 0

0xF80 PORTA - - RA5 RA4 RA3 RA2 RA1 RA0

0xF81 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

0xF82 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

0xF83 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

0xF84 PORTE - - - - RE3 RE2 RE1 RE0

0xF85 LATA - - LATA5 LATA4 LATA3 LATA2 LATA1 LATA0

0xF86 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0

0xF87 LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0

0xF88 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0

0xF89 LATE - - - - LATE3 LATE2 LATE1 LATE0

0xF92 TRISA - - TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0

0xF93 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

0xF94 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0

0xF95 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0

0xF96 TRISE - - - - TRISE3 TRISE2 TRISE1 TRISE0

0xF9D PEIE1 PSPIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

0xF9E PIR1 PSPIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

0xF9F IPR1 PSPIP ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP

0xFA0 PIE2 OSCFIE CMIE - EEIE BCLIE HLVDIE TMR3IE CCP2IE

0xFA1 PIR2 OSCFIF CMIF - EEIF BCLIF HLVDIF TMR3IF CCP2IF

0xFA2 IPR2 OSCFIP CMIP - EEIP BCLIP HLVDIP TMR3IP CCP2IP

0xFAB RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

0xFAC TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D

0xFAD TXREG 8 bit register (0-255)

0xFAE RCREG 8 bit register (0-255)

0xFAF SPBRG 8 bit register (0-255)

0xFB0 SPBRGH 8 bit register (0-255)

0xFB1 T3CON T3RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3CCP1 TMR3CS TMR3ON

0xFB2 TMR3 16 bit register (0..65535)

0xFB4 CMCON C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0

0xFB5 CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0

0xFB6 ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0

0xFB7 PWM1CON PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0

0xFB8 BAUDCON ABDOVF RCIDL RXDTP TXCKP BRG16 — WUE ABDEN

0xFBA CCP2CON — — DC2B1 DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0

0xFBB CCPR2 16 bit register (0..65535)

0xFBD CCP1CON P1M1 P1M0 DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0

0xFBE CCPR1 16 bit register (0..65535)

0xFC0 ADCON2 ADFM — ACQT2 ACQT1 ACQT0 ADCS2 ADCS1 ADCS0

0xFC1 ADCON1 — — VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0

0xFC2 ADCON0 — — CHS3 CHS2 CHS1 CHS0 GODONE ADON

0xFC3 ADRES 16 bit register (0..65535)

0xFC5 SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN

0xFC6 SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

0xFC7 SSPSTAT SMP CKE DA STOP START RW UA BF

0xFCA T2CON — T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0

0xFCB PR2 8 bit register (0-255)

0xFCC TMR2 8 bit register (0-255)

NDSU MPLABX and PICC18 ECE 376

JSG - 14 - rev February 20, 2015

0xFCD T1CON T1RD16 T1RUN T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON

0xFCE TMR1 16 bit register (0..65535)

0xFD0 RCON IPEN SBOREN — RI TO PD POR BOR

0xFD5 T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0

0xFD6 TMR0 16 bit register (0..65535)

0xFD8 STATUS — — — NEGATIVE OV ZERO DC CARRY

0xFF0 INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF

0xFF1 INTCON2 RBPU INTEDG0 INTEDG1 INTEDG2 — TMR0IP — RBIP

0xFF2 INTCON GIE PEIE TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF

This is what you get when you include the file PIC.H. This makes the following valid C code:

Byte Operations:
PORTB = PORTC; // copy PORTC to PORTB

TRISC = 0x0F; // Make bits 0..3 of PORTC input, bits 4..7 output

Bit Operations:
RB2 = RC6; // Copy PortC bit 6 to PortB bit 2.

Note: Some registers are 8 bits. Some aer 16 bits.

If you read an 8-bit register into a 16-bit variable, the high 8 bits are all zero.

If you read a 16-bit register into an 8-bit variable, you lose the high 8 bits.

Make sure you read the 16-bit variables as 16-bit numbers. These are usually the counters and timers on
the PIC, which can take values from 0 to 65,535. You'll want to use all of these values.

NDSU MPLABX and PICC18 ECE 376

JSG - 15 - rev February 20, 2015

