
Timer2 Interrupts

Background:

The execution time for routines sometimes needs to be set. This chapter loops at several ways to set the
sampling rate.

Example: Write a routine which increments an 8-bit counter every 10 ms and sends this to PORTC

Assembler Solution C Solution
 org 0x800
 goto Start

;*********************************
; 10ms wait routine
;*********************************

Wait movlw 60
 movwf CNT2

Loop1 movlw 138
 movwf CNT3

Loop2 nop
 nop
 nop
 decfsz CNT3
 goto Loop2

 decfsz CNT2
 goto Loop1
 return

;*********************************
; Main Routine
;*******************************

Start bcf STATUS,RP1
 bsf STATUS,RP0
 clrf TRISC
 bcf STATUS,RP0
 clrf COUTNER

Main incf COUNTER,F
 movf COUNTER,W
 movwf PORTC
 call Wait
 goto Main

// Subroutine Definitions

void Wait(void)
{
 unsigned int X;
 for (X=0; X<5000; X++) {}
 }

// Main Routine

void Main(void)
{
 unsigned char COUNTER;

 COUNTER = 0;
 TRISC = 0;

 do {
 COUNTER += 1;
 PORTC = COUNTER;
 Wait();
 } while (1>0);
 }

NDSU Timer2 Interrupts September 20, 2016

JSG - 1 -

In assembler, you can compute the exact time the wait routine takes:

#clocks = ((6 ∗ 138 + 5) ∗ 60 + 5) = 49, 985

time = (49, 985 clocks)⎛⎝
100ns
clock

⎞
⎠ = 4.9985ms

In C, you aren't sure exactly how long the routine takes since you don't know exactly how the code
compiles. Trial and error can be used to tweek the number 5,000

Note that
The timing is slightly off. This clock will be off by 26 seconds per day
The routine is rather inefficient. 99.95% of the time is spent in a wait loop. Only 0.05% of the
time is spent in the main routine.
This is much less accurate in C since you aren't sure exactly how your C code compiles.

TIMER Interrupts

One way to improve the efficiency of this program is to use interrupts. Interrupts are similar to
subroutines except that

Subroutines are routines called by software (such as the 10ms wait loop from before)
Interrupts are routines called by hardware (such as a certain time elapses)

Timers are useful, so four are available on the PIC18F4626:
TIMER0: Interrupt after N events (or N clocks). N = 1 to 224 (1.67 seconds)
TIMER1: Interrupt after N events (or N clocks). N = 1 to 219 (52 milliseconds)
TIMER2: Interrupt every N clocks. N = 1 to 216 (6.5 millisecond)
TIMER3: Interrupt after N events (or N clocks). N = 1 to 219 (52 milliseconds)

Default for the PIC is to disable interrupts. You must set up the interrupt (enable and conditions for the
interrupt) if you want to use them.

If an interrupt occurs,
The present instruction is completed
The processor inserts a call 0x08 into the program

At address 0x08, the interrupt service routine must be placed (or a goto InteruptService needs to be
placed. This routine must

Save the W and STATUS register. Since you don't know where in the program the interrupt will
be called, W and STATUS may be important.
Clear TMR2IF. This tells the PIC that the present interrupt has been serviced. If you don't, the
interrupt will be called immediately upon return, essentially halting the processor.
(optional) Do something
Restore the W and STATUS registers, and
Terminate with retfie for a return from interrupt.

NDSU Timer2 Interrupts September 20, 2016

JSG - 2 -

TIMER2 INITIALIZATION

Suppose you'd like to keep track of time. To do this, set up the interrupt so that it's called every 1
millisecond (10,000 clocks: 10000 * 100ns = 1ms).

For every interrupt you want to use, you need to initialize them by:
Enable the interrupt
Set up the conditions for the interrupt (10,000 clocks)

In the interrupt service routine (which is called every 10,000 clocks in this case), you need to
Do something (such as increment a counter, which is how the main program keeps track of time),
Set up the next interrupt (10,000 clocks from now), and
Acknowledge the interrupt (clear the interrupt flag)

The hoops you have to jump through for TIMER0 to TIMER3 are summarized in the following table:

Clock Source N Enable Bits Flag
TIMER2 N = 1..65,535

200ns to 13.1ms

N = A*B*C
A = 1..16
B = 1..256

C = 1, 4, 16

N = A*B*C
PR2 = B-1

T2CON = xaaaa1cc
aaaa = 0000: A=1
aaaa = 0001: A=2

:::
aaaa = 1110: A=15
aaaa = 1111: A=16

cc = 00: C = 1
cc = 01: C = 4
cc = 10: C = 16
cc = 11: C = 16

TMR2ON = 1
TMR2IE = 1
TMR2IP = 1

PEIE = 1

TMR2IF

To enable a Timer2 interupt, you need to turn it on four times
TMR2ON = 1; 0 turns off Timer2 and interrupts won't happen
TMR2IE = 1; 0 disables interrupts
PEIE = 1; 0 disables several interrupts, including TIMER2
GIE = 1; 0 disables all interrupts
TMR2IP = 1; Timer2 is a high priority interrupt

The rate at which the TIMER2 interrupts happen is

Time = (A ⋅ B ⋅C) ⋅ 100ns

A, B, and C are defined by registers T2CON and PR2:

T2CON 7 6 5 4 3 2 1 0
- A3 A2 A1 A0 TMR2ON C1 C0

PR2 7 6 5 4 3 2 1 0
B7 B6 B5 B4 B3 B2 B1 B0

NDSU Timer2 Interrupts September 20, 2016

JSG - 3 -

The scalar values are

PostScalar A Main Scalar B Prescalar C
A3:A2:A1:A0 A B7:B0 B C1:C0 C

0000 1 0000 0000 1 00 1
0001 2 0000 0001 2 01 4

10 16
1110 15 1111 1110 255 11 16
1111 16 1111 1111 256

The maximum time you can set for a Timer2 interrupt is

A x B x C = (16) x (256) x (16) = 65,536 clocks

= 6.5536 ms

Example: Toggle RC0 every 6.5536 ms (65,536 clocks)

#include <pic18.h>

// Global Variables

// Subroutine Declarations

void interrupt timer2(void)
{
 RC0 = !RC0;
 TMR2IF = 0;
 }

void main(void)
{
 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 TRISD = 0;
 ADCON1 = 15;

// initialize Timer2

 T2CON = 0xFF;
 PR2 = 255;
 TMR2IE = 1;
 PEIE = 1;
 TMR2ON = 1;
 TMR2IP = 1;

// Turn on all interrupts

 GIE = 1;

 while(1) {
 PORTB = PORTB + 1; // Count for no reason other than to count
 }
}

The resulting signal on RC0 is as follows:

NDSU Timer2 Interrupts September 20, 2016

JSG - 4 -

RC0 Toggles Every Timer2 Interrupt: Timer2 Set Up for N = 65,536 Clocks (6.5536 ms)

For a 1ms interrupt rate,

A ⋅ B ⋅C = (1ms) ⋅ (10, 000, 000 clock/second)

A x B x C = 10,000

One combination which works is
C = 01 (x 4)
B = 249 (x 250)
A = 9 (x 10)

or
PR2 = 249
T2CON = 0x4D

T2CON 7 6 5 4 3 2 1 0
- A3 A2 A1 A0 T2E C1 C0

(A=9, C=1) 0 1 0 0 1 1 0 1

Example: Toggle RC0 every 1.00ms

#include <pic18.h>

// Global Variables

// Subroutine Declarations

void interrupt timer2(void)
{
 RC0 = !RC0;
 TMR2IF = 0;

NDSU Timer2 Interrupts September 20, 2016

JSG - 5 -

 }

void main(void)
{
 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 TRISD = 0;
 ADCON1 = 15;

// initialize Timer2

 T2CON = 0x4D;
 PR2 = 249;
 TMR2IE = 1;
 PEIE = 1;
 TMR2ON = 1;
 TMR2IP = 1;

// Turn on all interrupts

 GIE = 1;

 while(1) {
 PORTB = PORTB + 1; // Count for no reason other than to count
 }
}

RC0 Toggles Every Timer2 Interrupt: Timer2 Set Up for N = 10,000 Clocks (1.000 ms)

NDSU Timer2 Interrupts September 20, 2016

JSG - 6 -

The flow chart for this program is a little difficult to draw since two routines are running in parallel:
The main routine which sends COUNTER to PORTC and repeats
The Timer2 routine which increments COUNTER every 1ms.

Two parallel flow charts may be the best way to represent this:

Start

Set PortC
to output

Initialize Timer2
Interrupts for 2ms

Turn On Interrupts

Copy COUNT
to PORTC

Start
Every 2ms

Save W & STATUS

(do stuff)

Clear Interrupt
Flag

Restore
W & STATUS

Return from
Interrupt

Main Routine Interrupt Service Routine

Increment COUNT

11

Note that
The main routine simply watches COUNTER and sends it to PORTC.
The Interrupt routine is responsible for changing COUNTER every 1ms

Moroover:
The shaded parts of the interupt routine are common to any interrupt service routine.
Only the conditions under which this routine is called (set up in the main routine) and what you do
when it is called change.

NDSU Timer2 Interrupts September 20, 2016

JSG - 7 -

Interrupt Constraints

Background:

Timer2 interrupts are a way to keep track of time.
The PIC is running at 10 million instructions / second (10MHz)
Every N clocks, a Timer2 interrupt is triggered

N = A * B * C
A, C are from T2CON
B is from PR2

When the interrupt is triggered, the main routine stops and you run the interrupt service routine.

If you plot time on the X axis, the processor is then running as follows:

Timer2 Interrupt is triggered every N clocks

In Main RoutineIn Main Routine In Main RoutineIn Main Routine

Main routine halted
Running the interrupt service routine

Interrupt Interrupt

Once set up, the main routine has no control over the timing: hardware triggers the interrupt every N
clocks. Note however, that the interrupt service routine is stealing clocks from the main routine. You
can't steal more than 100%. You probably don't want to steal more than 50%.

With interrupts turned on, you essentially have 2 (or more) programs running in parallel:
The main routine which supposedly does stuff,
The interrupt routines which handle administration every time an event occurs.

This creates several possible constraints:

NDSU Timer2 Interrupts September 20, 2016

JSG - 8 -

Timing Constraints:

This interrupt service routine takes about 50 clocks to execute. This is much more efficient than the wait
loop which wastes 10,000 clocks to wait 1ms. Instead, the interrupt 'steals' 50 clocks from the main
routine every 10,000 clocks.

If you call the interrupt more often (because you want a timer with a better resolution than 1ms) this
slows down the processor. If you go too fast, the main routine shuts down and all the time is spent in the
interrupt service routine:

Interrupt Time
(clock resolution)

Clocks / Interrupt
(N)

Clocks Spent in
the Interrupt

Clocks Left for
the Main Routine

Processor 'Speed'

1ms 10,000 50 9,950 99.5%
100 us 1,000 50 950 95%
10 us 100 50 50 50%
1 us 10 50 -50 0%

The faster you interrupt, the more accurate your clock. The faster you interrupt, however, the slower the
main routine appears to run. Moreover, if you interrupt too frequently, you spend all of the time servicing
the interrupt and never get to the main routine.

This results in the following rule:
Keep interrupt service routines short. The interrupt service routine should take much less
time to execute than the rate at which it is called.
With Timer2 interrupts, you can keep track of time to 100us (slowing down the main routine
by 50%).

There are ways to measure time to 100ns - but this comes up later with Timer1 interrupts.

NDSU Timer2 Interrupts September 20, 2016

JSG - 9 -

