
Timer0 Interrupts
Timers are pretty useful: likewise, Microchip provides four different timers for you to use. Like all

interrupts, you have to

Enable the interrupt,

Set the conditions of the interrupt, and then

Do something when the interrupt happens (check the interrupt flag)

These hoops are summarized in the following table for all four timer interrupts.

Interrupt Description Input Conditions Enable Flag

Timer 0 Trigger after N events
N = 1 .. 224

100ns to 1.67 sec

RA4:
TOCS = 1

OSC/4:
TOCS = 0

N = (PS)(Y)
T0CON = 0x88: PS = 1
T0CON = 0x80: PS = 2
T0CON = 0x81: PS = 4
T0CON = 0x82: PS = 8
T0CON = 0x83: PS = 16
T0CON = 0x84: PS = 32
T0CON = 0x85: PS = 64
T0CON = 0x86: PS = 128
T0CON = 0x87: PS = 256

TMR0 = -Y

TMR0ON = 1
TMR0IE = 1
TMR0IP = 1

PEIE = 1

TMR0IF

Timer 1 Trigger after N events
N = 1 .. 219

100ns to 0.52 sec

RC0
TMR1CS = 1

OSC/4
TMR1CS = 0

N = (PS)(Y)
T1CON = 0x81: PS = 1
T1CON = 0x91: PS = 2
T1CON = 0xA1: PS = 4
T1CON = 0xB1: PS = 8

TMR1 = -Y

TMR1ON = 1
TMR1IE = 1
TMR1IP = 1

PEIE = 1

TMR1IF

Timer2 Interupt every N
clocks (OSC/4)
N = 1 .. 65,535

100ns to 6.55ms

OSC/4 N = A * B * C
A = 1..16 (T2CON 3:6)

B = 1..256 (PR2)
C = 1, 4, 16 (T2CON 0:1)

T2E = 1
TMR2IE = 1

PEIE = 1

TMR2IF

Timer 3 Trigger after N events
N = 1 .. 219

100ns to 0.52 sec

RC1
TMR3CS = 1

OSC/4
TMR3CS = 0

N = (PS)(Y)
T3CON = 0x81: PS = 1
T3CON = 0x91: PS = 2
T3CON = 0xA1: PS = 4
T3CON = 0xB1: PS = 8

TMR3 = -Y

TMR3ON = 1
TMR3IE = 1
TMR3IP = 1

PEIE = 1

TMR3IF

Timer0, Timer1, and Timer3 are slightly different than Timer2. Each of these three are very similar, so

let's take Timer0 for example.

The input to Timer0 can be either the on-board clock (10MHz) or an external pin. This lets you interrupt

every N edges for an external event or every N clocks.

The input goes to a frequency divider, PS, which drops the frequency by 2N for N = 0 to 8.

The output of the divider then goes to a 16-bit counter, TMR0. When the counter wraps around from

0xFFFF to 0x0000, a Timer0 interrupt is triggered.

10MHz

Clock

RA4
T0CS=1

T0CS=0

PS TMR0

16-bit counter1,2,4,..,256

Interupt when TMR0 goes from 0xFFFF to 0x0000

Timer0 Interrupt is triggered every 100 to 224 clocks (1.67 seconds)

NDSU Timer0 Interrupts ECE 376

JSG - 1 -

External Events: Count every 7th Button Push

One use of TIMER0 is to count every Nth rising edge. To do this

Set the input to RA4 (T0CS = 1)

Set up TMR0 = -7

after seven rising edges, TMR0 = 0, which triggers the interrupt

Inside the interrupt service routine, reset TMR0 = -7

the next interrupt will be 7 rising edges later.

Interrupt service routine

Counts every 7th rising edge on RA4

void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -7;
 N += 1;
 TMR0IF = 0;
 }
 }

Interrupt initialization

Input is RA4

PS = 1

// set up Timer0 for PS = 1
 T0CON = 0x88;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 T0CS = 1;
 PEIE = 1;
// turn on all interrupts
 GIE = 1;

Main Routine:

Display TMR0

Display N

 while(1) {
 LCD_Move(0,8); LCD_Out(-TMR0, 5, 0);
 LCD_Move(1,8); LCD_Out(N, 5, 0);
 }
 }

NDSU Timer0 Interrupts ECE 376

JSG - 2 -

Counting Rising Edges on RA4 using Timer0.

Note that a jumper connects RB7 to RA4. This allows you to count every 7th button press on RB7

A couple of things to note:

Unlike Timer2, with Timer0, you have to set up the next interrupt each time you interrupt

What triggers the interrupt is TMR0 going 0x0000.

If you do nothing, TMR0 won't return to 0x0000 for another 65,536 counts

It is important to imitialize TMR0

If you forget to initialize TMR0 to something like TMR0 = -7, then it will be something when the

program starts. If it's something large, like TMR0 = -12345, you won't see anything until you

press the button 12,345 times. From that point onwards, it will count every 7th edge.

NDSU Timer0 Interrupts ECE 376

JSG - 3 -

Timer0 & Timing: Default Rate with PS = 1:

If you change T0CS=0, Timer0 counts clock, similar to Timer2. You can then create an interrupt every

N clocks, like Timer2.

For example, turn on Timer0

With a prescalar of 1

And toggle RC0 every interrupt

When Timer0 interrupts, you know that

TMR0 = 0x0000

Wrap around is what triggers the interrupt. The next interrupt won't happen again for another 65,536

clocks (216 counts). This results in Timer0 interrupting every 6.5536ms (the default rate for Timer0).

// Global Variables

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR0IF) {
 RC0 = !RC0;
 TMR0IF = 0;
 }
 }

// Main Routine

void main(void)
{
 TRISA = 0;
 TRISB = 0;
 TRISC = 0;
 TRISD = 0;
 ADCON1 = 0x0F;

// set up Timer0 with PS = 1
 T0CS = 0;
 T0CON = 0x88;
 TMR0ON = 1
 TMR0IE = 1
 TMR0IP = 1
 PEIE = 1

// turn on all interrupts
 GIE = 1;

// Do nothing. Interrupts do all the work.
 while(1) {
 PORTB = PORTB + 1;
 }
 }

NDSU Timer0 Interrupts ECE 376

JSG - 4 -

Signal at RC0: Default Timer0 Interrupt Rate with PS = 1: 65,536 Clocks

Timer0 Interrupt every 1ms

Example 2: Change the interrupt service routine to

void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -10000;
 RC0 = !RC0;
 TMR0IF = 0;
 }
 }

Timer0 with N = 10,000 (1.00 ms)

NDSU Timer0 Interrupts ECE 376

JSG - 5 -

When Timer0 interrupts, TMR0 = 0x0000. Wrapping around to zero is what causes the interrupt. By

changing TMR0 to -10,000, you are setting up the next interrupt to happen 1ms in the future (10,000

clocks). This results in RC0 toggling every 10,000 clocks.

Measuring the time it takes to trigger an interrupt:

Actually, TMR0 toggles every 10,000 clocks - plus however many clocks it takes to trigger the interrupt

and get to that line of code. To see how long this takes, the following code is used:

// Global Variables
unsigned int N = 100;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -N;
 RC0 = !RC0;
 TMR0IF = 0;
 }
 }

You would expect RC0 to toggle every 100 clocks (N = 100). Actually, it toggles every 150 clocks

(15us). This tells you it takes about 50 clocks to trigger an interrupt.

Timer0 with N = 100. RC0 toggles every 150 clocks - telling you that it takes 50 clocks to call the interrupt.

NDSU Timer0 Interrupts ECE 376

JSG - 6 -

Playing Note D5: 587.33Hz

Example 3: Generate the note D5 (587.33Hz) on RC0.

The number of clocks between interrupts should be

N =

10,000,000

2⋅Hz

 = 8513.1017

Change the previous code to:

// Global Variables
unsigned int N = 8513 - 50;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -N;
 RC0 = !RC0;
 TMR0IF = 0;
 }
 }

and you get almost the exact frequency you wanted. Timer0 interrupts are way easier that Timer2

interrupts (or figuring out the timing using assembler).

Frequency measured on RC0 from Piano Tuner app

NDSU Timer0 Interrupts ECE 376

JSG - 7 -

Timer0 with N = 8513 - 50 (587.33Hz)

NDSU Timer0 Interrupts ECE 376

JSG - 8 -

Measuring Time to 100ns

You can also use Timer0 to measure time to 100ns. For example, measure the time of the routine

Wait_ms(1000);

Here you have a problem: the longest time TMR0 can measure is 6.55ms (65,536 clocks). To measure

longer times, create a 32-bit counter:

The low 16-bits are TMR0

The high 16-bits are stored in a variable, TIME

Every Timer0 interrupt, add 0x10000 to TIME (one Timer0 overflow).

In the main routine then

Record the time before calling Wait_ms(1000)

Record the time after call it, and

Take the difference.

Interrupt Service Routine:

// Global Variables
unsigned long int TIME;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR0IF) {
 TIME = TIME + 0x10000;
 RC0 = !RC0;
 TMR0IF = 0;
 }
 }

Main Routine: Main loop

 while(1) {

 TIME0 = TIME + TMR0; // time before call
 Wait_ms(1000);
 TIME1 = TIME + TMR0; // time after call
 LCD_Move(0,0);
 LCD_Out(TIME1 - TIME0, 7); // time difference

 }

NDSU Timer0 Interrupts ECE 376

JSG - 9 -

The time it takes to execute Wait(1000) as measured using Timer0 interrupts.

Note that you can measure time to an obscene number of decimal places using Timer interrupts.

NDSU Timer0 Interrupts ECE 376

JSG - 10 -

