
Timer1 Capture Mode:
Interrupt Description Input Conditions Enable Flag

Timer 1 Trigger after N events
N = 1 .. 219

100ns to 0.52 sec

RC0
TMR1CS = 1

OSC/4
TMR1CS = 0

N = (PS)(Y)
T1CON = 0x81: PS = 1
T1CON = 0x91: PS = 2
T1CON = 0xA1: PS = 4
T1CON = 0xB1: PS = 8

TMR1 = -Y

TMR1ON = 1
TMR1IE = 1
TMR1IP = 1

PEIE = 1

TMR1IF

Timer 1
Capture
Mode 1

On an event, record the
TIMER1 counter and trigger

an interrupt.

Time of the event is stored
in CCPR1

RC2 CCP1CON = 0x04: every rising edge
CCP1CON = 0x05: every falling edge
CCP1CON = 0x06: 4th rising edge
CCP1CON = 0x07: 16th rising edge

TMR1ON = 1
CCP1IE = 1

PEIE = 1;

CCP1IF

Timer 1
Capture
Mode 2

On an event, record the
TIMER1 counter and trigger

an interrupt.

Time of the event is stored
in CCPR2

RC1 CCP2CON = 0x04: every rising edge
CCP2CON = 0x05: every falling edge
CCP2CON = 0x06: 4th rising edge
CCP2CON = 0x07: 16th rising edge

TMR1ON = 1
CCP2IE = 1

PEIE = 1;

CCP2IF

A PIC processor is able to measure time to 100ns. If you want to record the time of an event with time
known to the clock, use Timer1 Capture Mode.

There are two Timer1 Capture interrupts:
Capture Mode 1 records the time of an event on pin RC2
Capture Mode 2 records the time of an event on pin RC1 (yes, it's backwards)

MCLR
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
+5
gnd
OSC1
OSC2
RC0
RC1/Capture2
RC2/Capture1
RC3
RD0
RD1

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
+5
gnd
RD7
RD6
RD5
RD4
RC7
RC6
RC5
RC4
RD3
RD2

PIC18F4620

Catpure1
Capture2

Capture Interrupts Record the time of an event on RC2 (Capture1) and RC1 (Capture2)

NDSU Timer1 Capture Mode April 16, 2018

JSG - 1 -

Timer1 Capture Description
What a Time1 capture interrupt does is

When an event is observed on RC1 or RC2 (rising or falling edge),
The time stored in TMR1 is copied to a register, and
A Timer1 Capture interrupt is triggered.

10MHz
PS TMR1

CCPR1

CCPR2

Edge on RC2
Set CCPR1IF

Edge on RC1
Set CCPR2IF

16-bit

16-bit

16-bit

Timer1 Capture1 and Capture2: On an event, the time stored in TMR1 is saved

To get Timer1 Capture to work

i) You have to turn on Timer1.

ii) You have to set the condition for Timer1 Capture interrupt:
Capture every falling edge: CCP1CON = 0x04
Capture every riding edge: CCP1CON = 0x05
Capture every 4th rising edge: CCP1CON = 0x06
Capture every 16th rising edge: CCP1CON = 0x07

iii) Pin RC1 or RC2 have to be input

iv) You have to enable the Timer1 Capture interrupt (various flags)

At that point, whenever the corresponding edge is detected on RC1 (Capture2) or RC2 (Capture1),
The value of TMR1 is copied to CCPR1 or CCPR2
A Timer1 Capture interrupt is triggered.

NDSU Timer1 Capture Mode April 16, 2018

JSG - 2 -

Example 1: Measure the frequency of a square wave (Capture1.C)
Generate a 500Hz square wave on RC0 using Timer0.
Connect RC0 to RC2
Measure the period of this square wave using Capture1 interrupts.

Here, we have three interrupts running in parallel:
Timer0 interrupts every 10,000 clocks (1ms)
Timer1 interrupts every 65,536 clocks (6.55ms)
Capture1interrupts trigger every rising edge on RC2 (2ms)

CCPR1 Interrupts

TMR0 Interrupts

Timer1 Interrupt

(1ms)

(2 ms)

(6.55ms)

RC2

Three interrupts running in parallel:

Timer1 is turned on with a prescalar of 1 - but there is no need to trigger a Timer1 interrupt. The event
we're measuring takes less than 65,536 clocks (6.5ms) so we don't have to worry about Timer1 wrapping
around.

Code: (main sections in larger font - smaller font is mundane code that you need for it to compile)
#include <pic18.h>

// Global Variables
unsigned long int TIME, TIME0, TIME1;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR0IF) {
 TMR0 = -10000;
 RC0 = !RC0;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 TIME0 = TIME1;
 TIME1 = TIME + CCPR1;
 CCP1IF = 0;
 }
 }

NDSU Timer1 Capture Mode April 16, 2018

JSG - 3 -

// Subroutines
#include "lcd_portd.c"
void LCD_Out(unsigned long int DATA, unsigned char N)
{
 unsigned char A[10], i;

 for (i=0; i<10; i++) {
 A[i] = DATA % 10;
 DATA = DATA / 10;
 }
 for (i=10; i>0; i--) {
 if (i == N) LCD_Write('.');
 LCD_Write(A[i-1] + '0');
 }
}
// Main Routine

void main(void)
{
 TRISA = 0;
 TRISB = 0;
 TRISC = 0x04; // capture every rising edge
 TRISD = 0;
 ADCON1 = 0x0F;

// set up Timer0 for PS = 1
 T0CS = 0;
 T0CON = 0x88;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 PEIE = 1;
// set up Timer1 for PS = 1
 TMR1CS = 0;
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// set up Capture1 for rising edges
 TRISC2 = 1;
 CCP1CON = 0x05;
 CCP1IE = 1;
 PEIE = 1;

 LCD_Init();
 Wait_ms(100);

 TIME = 0;

// turn on all interrupts
 GIE = 1;

 while(1) {
 LCD_Move(0,0); LCD_Out(TIME + TMR1, 7);
 LCD_Move(1,0); LCD_Out(TIME1 - TIME0, 7);
 }
 }

NDSU Timer1 Capture Mode April 16, 2018

JSG - 4 -

What appears on the display is as follows:

Program Capture1.C Row #1 displays time since reset (TMR1) showing that Timer1 is working.
 Row 2 displays the period of the square wave on RC2. Note that a wire shorts RC0 to RC2.

What this tells you is the period is 20,082 clocks.
Timer0 has to interrupt twice to get another rising edge
Timer0 apparently interrupts every 10,041 clocks
It takes 41 clocks to trigger a Timer0 interrupt

NDSU Timer1 Capture Mode April 16, 2018

JSG - 5 -

Example 2: Measure a pulse width (Capture2.C)
Tap button RB0. Measure how long that button was pressed (falling edge vs. rising edge).

To do this, use three interrupts:
Timer1 keeps track of time to 100ns
Capture1 records the time of the rising edge
Capture2 records the time of the falling edge

Timer1 (6.55ms)

RB0

Capture1 Capture2

Three Interrupts are Running: Timer1 every 6.55ms, Capture1 on rising edges, Capture2 on falling edges

Code: (Capture2.C - normal stuff in 8-point font. Stuff to note is in color and 10-point font)
#include <pic18.h>

// Global Variables
unsigned long int TIME, TIME0, TIME1;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR1IF) { // 6.55ms
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) { // rising edge
 TIME0 = TIME + CCPR1;
 CCP1IF = 0;
 }
 if (CCP2IF) { // falling edge
 TIME1 = TIME + CCPR2;
 CCP2IF = 0;
 }
 }

// Subroutines
#include "lcd_portd.c"

void LCD_Out(unsigned long int DATA, unsigned char N)
{
 unsigned char A[10], i;

 for (i=0; i<10; i++) {
 A[i] = DATA % 10;
 DATA = DATA / 10;
 }
 for (i=10; i>0; i--) {
 if (i == N) LCD_Write('.');
 LCD_Write(A[i-1] + '0');
 }
}

NDSU Timer1 Capture Mode April 16, 2018

JSG - 6 -

// Main Routine

void main(void)
{
 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0x04; // capture every rising edge
 TRISD = 0;
 ADCON1 = 0x0F;

 LCD_Init();
 Wait_ms(100);

 TIME = 0;

// set up Timer1 for PS = 1
 TMR1CS = 0;
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// set up Capture1 for rising edges
 TRISC2 = 1;
 CCP1CON = 0x05;
 CCP1IE = 1;
 PEIE = 1;
// set up Capture2 for falling edges
 TRISC1 = 1;
 CCP2CON = 0x04;
 CCP2IE = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;

 while(1) {
 LCD_Move(0,0); LCD_Out(TIME + TMR1, 7);
 LCD_Move(1,0); LCD_Out(TIME1 - TIME0, 7);
 }
 }

Display from Capture2.C. Row #1 displays the time since reset (TMR1)
Row #2 displays the duration of the last pulse (5.7408ms in this case)

Note that pin RB0 is tied to RC1 and RC2 with jumper wires.

NDSU Timer1 Capture Mode April 16, 2018

JSG - 7 -

Example 3: Range Sensor (Range.C)

In your lab kit is an ultrasonic range sensor. This device has four pins:
Vcc: input: +5V
Trig: input: 0V/5V pulse from the PIC
Echo: output: 0V/5V pulse to the PIC.
Gmd: input: 0V

Each time you sent from the range sensor. The time it takes for the sound to return is the duration of the
pulse on Echo. For example, if Trig is a 19Hz square wave, the signal on Echo might look like this:

Singal on Echo pin. The pulse width is proportional to distance

To compute to distance, do the following:

The speed of sound at 1atm at 20C with dry air is 343 m/s. (www.wikipedia.com)

v = 343 m/s

The distance sound travels in 50ns (50ns there plus 50ns return = 100ns clock) is

d = (343m
s) ⋅ (50ns) = 17.15μm

1 clock = 17.15μm
Hence, if you measure the duration of the pulse on Echo, the distance is then

NDSU Timer1 Capture Mode April 16, 2018

JSG - 8 -

d = 17.15 * dT units = microns,

d = 0.01715 * dT units = mm

where dT = duration of Echo pulse in clock tics. For comparison,
Human Hair: 17 to 180um
Thickness of a Piece of Paper: 70 to 180um
Paramecium: 50 to 330um
Bacteria: 0.5 to 5.0 um
Hydrogen Atom: 0.0001 um

With a resolution of 17um, you can't see an atom but you can detect if a single piece of paper was
removed from a stack.

Using the previous code, you can turn your range sensor into a meter stick:
#include <pic18.h>

// Global Variables
unsigned long int TIME, TIME0, TIME1, dT;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR0IF) {
 RC0 = !RC0;
 TMR0IF = 0;
 }
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 if (CCP1CON == 0x05) { // rising edge
 TIME0 = TIME + CCPR1;
 CCP1CON = 0x04;
 }
 else {
 TIME1 = TIME + CCPR1;
 dT = TIME1 - TIME0;
 CCP1CON = 0x05;
 }
 CCP1IF = 0;
 }
 }
// Subroutines
#include "lcd_portd.c"

void LCD_Out(unsigned long int DATA, unsigned char N)
{
 unsigned char A[10], i;

 for (i=0; i<10; i++) {
 A[i] = DATA % 10;
 DATA = DATA / 10;
 }
 for (i=10; i>0; i--) {
 if (i == N) LCD_Write('.');
 LCD_Write(A[i-1] + '0');
 }
}

NDSU Timer1 Capture Mode April 16, 2018

JSG - 9 -

// Main Routine

void main(void)
{
 int mm;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0x04; // capture every rising edge
 TRISD = 0;
 ADCON1 = 0x0F;

 LCD_Init();
 Wait_ms(100);

 TIME = 0;

// set up Timer0 for PS = 1
 T0CS = 0;
 T0CON = 0x81;
 TMR0ON = 1;
 TMR0IE = 1;
 TMR0IP = 1;
 PEIE = 1;
// set up Timer1 for PS = 8
 TMR1CS = 0;
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// set up Capture1 for rising edges
 TRISC2 = 1;
 CCP1CON = 0x05;
 CCP1IE = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;

 while(1) {
 mm = dT * 0.1715; // 1 count = 1/10 mm

 LCD_Move(0,0); LCD_Out(dT, 7);
 LCD_Move(1,0); LCD_Out(mm, 1);

 }
 }

NDSU Timer1 Capture Mode April 16, 2018

JSG - 10 -

Typical display from Range.C. The pulse width of Echo was 380.4us. The corresponding distance was 63.3mm

NDSU Timer1 Capture Mode April 16, 2018

JSG - 11 -

Example 3: Measure how high you can jump (Jump.C)
Place a laser beam on the ground and shine it on a light sensor. In hardware, output 5V when the light is
shining on this sensor, 0V when not. If you stand, breaking the beam of light, then jump in the air, the
time you're in the air is equal to the pulse width seen by the PIC.

The previous program allows you to record your hang time to 100ns. To compute how high you jumped,
use

d = 1
2at2

t is the time from the apogee to the ground - equal to 1/2 the time we measured.

d = 1
2a ⋅ ⎛⎝

1
2(t1 − t0)⎞⎠

2

or

d = 1
8a(t1 − t0)2

The interrupt service routine:

#include <pic18.h>

// Global Variables
unsigned long int TIME, TIME0, TIME1, dT;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 TIME0 = TIME + CCPR1;
 CCP1IF = 0;
 }
 if (CCP2IF) {
 TIME1 = TIME + CCPR2;
 dT = TIME1 - TIME0;
 CCP2IF = 0;
 }
 }

Main Loop:

 while(1) {
 time = 0.0000001 * dT;
 meters = 0.125 * 9.8 * time * time;

 LCD_Move(0,0); LCD_Out(dT, 7);
 LCD_Move(1,0); LCD_Out(meters*1000000.0, 6);

 }
 }

NDSU Timer1 Capture Mode April 16, 2018

JSG - 12 -

Result of program Jump.C. Row #1 displays your hang time in seconds.
Row #2 displays your computed vertical leap in maters

To find the resolution,
The smallest change in time you can see is 100ns
Perturb time by 100ns and compute your vertical leap again
The difference is the resolution of this device in meters

For example
0.763 996 6 second corresponds to 0.715 021 236 meters
0.763 996 7 seconds corresponds to 0.725 021 423 meters

The difference is 0.000 000 187 meters (187 nm)

This sensor has a resolution of 187nm

If someone jumped 187nm higher than you, this sensor could see it.

NDSU Timer1 Capture Mode April 16, 2018

JSG - 13 -

