
SCI Communications

Goal:
Send and receive serial data using SCI protocol.
Send data to a PC via the RS232 serial port.

Why:
Debugging code.

Sending data to a PC is a useful way to debug code, similar to the LCD display, or collect data.
Hyperterm lets you see and save data that comes in on the COM1 or COM2 port.

Efficiency. You can send an unlimited amount of data using 3 lines in full duplix mode:
RC7/RX receive: data being sent to the PIC
RC6/TX transmit: data being sent from the PIC
ground common ground (not needed if launching a wave)

or 2-lines in 1/2 duplix mode:
Data transmit / recieve data
Ground common ground (not needed if launghing a wave)

Hardware Connection:

RC7/RX
RC6/TX

RC7/RX
RC6/TX

gnd gnd

PIC PIC

PIC to PIC communication via SCI communications

RC7/RX

RC6/TX

gnd

PIC
+/- 12V
RS232

0/5V

UART
MAX232A

COM1
port

null modem

PIC to PC communication via SCI communications. Note that a UART is required to convert PIC voltage
levels (0/5V) to RS232 voltage levels (12V).±

NDSU Serial Communications January 13, 2015

JSG 1

Also note that you need to swith the TX/RX lines between devices. This is what a null-modem does on a
dB9 connector.

Timing:

A generic SCI message looks like the following:

bit 0 bit 7

stop bit(s)

1 2 3

Next byte can start
anytime after the
stop bits

Start
bit

Start of Message
Width of each bit
is constant and set
by BRGH

T

bit 1 bit 6

The data is sent and recieved as
A start bit (high to low transition)
8 data bits - least sgnificant bit first
0, 1, or 2 stop bits

The start bits signals that a message is coming. It is needed since the first data bit may be the same as the
default state of the data line. Since there is no clock, the reciever wouldn't know that anything has
changed and that data is incoming.

If you use the built-in SCI port, the timing for reading and writing the bits is automatic. For transmission:
The hadware adds the start and stop bits
The hardware sets up the timing for each bit.
All you need to do in software is

Check that the SCI port is free (wait until TRMT=1)
Start the data transmission (write to TXREG)

For reception
The hardware detects the start bit automatically
The hardware sets up the timing for reading in each bit
The hardware actually reads each bit three times and does best-of-three voting to reduce errors
The hardware then signals the software when 8-bits have beed read in by setting RCIF
Once a bye has been recieved, the data can be read from RCREG.

NDSU Serial Communications January 13, 2015

JSG 2

Write to TXREG

TX

TRMT

TXIF
TXIF sets indicating that the TX buffer
is available for the next byte

TRMT=0 indicates that the SCI port is busy

SCI port ready to
send another byte

SCI Transmission

SCI Reception
RX

RXIF RCIF going high indicates
that a byte was recieved on the SCI port

bit 0 bit 7

bit 0 bit 7

Data loaded into RCREG

note: Transmission and reception are not synchronized. Either can happen at any time relative to the
other.

How: Software:

1. Set up PORTC as follows:

TRISC (address 0x__ - Bank __)
Bit 7 6 5 4 3 2 1 0

name RX TX - - - - - -
value 1 1 x x x x x x

note: Both transmit and receive are set up as input.
When TXEN=1 (transmit enable), you override TRISC and make RC6 an output.
When TXEN=0 (transmit disabled), RC6 returns to high-impedance. This allows someone else to
drive the data line.

2. Set the baud rate. There is no clock, so the two devices must know how long each bit is. For
example, suppose you recieve the following data:

10ms

RX

time

If you think the data was transmitted at 50 baud (for one bit being 20ms), you'd read this as 0xFF

NDSU Serial Communications January 13, 2015

JSG 3

RX

start

1 1 1

20ms

If you think the daa was transmitted at 4k baud (for one bit every 2.5ms), you'd read this as 0x80
(remember: LSB first)

RX

start 2.5ms

0 0 0 0 0 0 0 1

Moral: The transmitter and reciever must be set to the same baud rate or else the data won't get through
correctly.

The baud rate is set by bits SYNF, BRGH, and SPBRG

TABLE 10-1: BAUD RATE FORMULA (FOSC = 10,000,00)

SYNC BRG16 = 1
BRGH = 0

BRG16 = 1
BRGH = 1

0 Baud Rate = FOSC/(16(X+1)) Baud Rate= FOSC/(4 (X+1))

X = SPBRGH : SPBRG (0 .. 65,535)

Some common settings for a 20MHz crystal follow:

Baud Rate SPBRG BRGH BRG16 SYNC Error (%)
2,400 255 0 1 0 -1.70%
4,800 129 0 1 0 -0.16%
9,600 255 1 1 0 -1.70%

19,200 129 1 1 0 -0.16%

38,400 64 1 1 0 -0.16%
57,600 42 1 1 0 -0.95%

115,200 21 1 1 0 +1.44%

NDSU Serial Communications January 13, 2015

JSG 4

Transmit Status Register: TXSTA (address 0x98 - Bank 1)
Bit 7 6 5 4 3 2 1 0

Name CSRC TX9 TXEN SYNC - BRGH TRMT TX9D
Write Vaue
(for set-up)

1 0 1 0 - 1/0 - -

Read Value - - - - - - 0/1 bit 9

bit 7: CSRC: Clock Source Select bit
1 = Clock generated by PIC
0 = Clock from external source

bit 6: TX9: 9-bit Transmit Enable bit
1 = Selects 9-bit transmission
0 = Selects 8-bit transmission

bit 5: TXEN: Transmit Enable bit
1 = Transmit enabled
0 = Transmit disabled

bit 4: SYNC: USART Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode

bit 3: Unimplemented: Read as '0'

bit 2: BRGH: High Baud Rate Select bit
1 = High speed
0 = Low speed

bit 1: TRMT: Transmit Shift Register Status bit
1 = TSR empty
0 = TSR full

bit 0: TX9D: 9th bit of transmit data. Can be parity bit.

NDSU Serial Communications January 13, 2015

JSG 5

RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)
Bit 7 6 5 4 3 2 1 0

Name SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

Write Vaue
(for set-up)

1 0 1 1 0 - - -

Read Value
(reception)

- - - - - 1/0 1/0 1/0

bit 7: SPEN: Serial Port Enable bit
1 = Serial port enabled (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins)
0 = Serial port disabled

bit 6: RX9: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit 5: SREN: Single Receive Enable bit (This bit is cleared after reception is complete.)
1 = Enables single receive
0 = Disables single receive

bit 4: CREN: Continuous Receive Enable bit
1 = Enables continuous receive
0 = Disables continuous receive

bit 3: ADDEN: Address Detect Enable bit

Asynchronous mode 9-bit (RX9 = 1)
1 = Enables address detection, enable interrupt and load of the receive burffer when RSR<8> is set
0 = Disables address detection, all bytes are received, and ninth bit can be used as parity bit

bit 2: FERR: Framing Error bit
1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)
0 = No framing error

bit 1: OERR: Overrun Error bit
1 = Overrun error (Can be cleared by clearing bit CREN)
0 = No overrun error

bit 0: RX9D: 9th bit of received data (Can be parity bit)SSPEN = 1 to enable the SPI port.

NDSU Serial Communications January 13, 2015

JSG 6

Sample Routines: SCI Data Transmission

Program #1: Initialize the SCI port to send and recieve data at 9600 baud:

void SCI_Init(void)
{
 TRISC = TRISC | 0xC0;
 TXIE = 0;
 RCIE = 0;
 BRGH = 1;
 BRG16 = 1;
 SYNC = 0;
 SPBRG = 255;
 TXSTA = 0x22;
 RCSTA = 0x90;
 }

Program #2: Send the message 'Hello' to the SCI port at 9600 baud.
You can see this on the PC if you load Hyperterminal, set it to 9600 baud, 8 data bits, 1 stop bit, no
handshaking.
You will also need to use a UART to convert the 0/5V signals to +/- 12V.

// Global Variables
const unsighed char MSG[6] = "Hello";

// Subroutine Declarations
#include <pic.h>

// Subroutines
#include "function.c"
#include "sci_init.c" // see above

// main
{
 unsigned char i;
 SCI_Init();

 for (i=0; i<5; i++) {
 while(!TRMT); TXREG = MSG[i];
 }
 }

NDSU Serial Communications January 13, 2015

JSG 7

Program #3: Read the A/D input and send its reading to a PC once every second:

// Global Variables

// Subroutine Declarations
#include <pic.h>
#include <stdio.h>

// Subroutines
#include "function.c"
#include "sci_init.c" // see above
#include "a2d.c"

// main
{
 SCI_Init();

 while(1) {

// read the A/D input. Data = 0..1023

 Data = A2D_Read(0);

// Send Data to the PC via the SCI port in hexadecimal format.

 while(!TRMT); TXREG = ascii(Data >> 12);
 while(!TRMT); TXREG = ascii(Data >> 8);
 while(!TRMT); TXREG = ascii(Data >> 4);
 while(!TRMT); TXREG = ascii(Data);

// end with a carriage return <13>, line feed <10>

 while(!TRMT); TXREG = 13;
 while(!TRMT); TXREG = 10;

// and repeat every second.

 Wait_ms(1000);

 }
 }

NDSU Serial Communications January 13, 2015

JSG 8

Sample Routines: SCI Data Reception

Write a routine which
Reads in data from the PC
Echos back each character as you type it in
Saves the message in a buffer, and
Looks for a carriage return <13> to terminate the message.

Since the data could arrive at any time
Use interrupts to save the data.
Use a stack to save the data as it comes in.
Echo back what you read on the SCI port. If you connect to a PC, you should see Display the data
on an LCD display.

// Global Variables

bank1 unsigned char MSG[20]; // the data coming in
bank1 unsigned char MSG_LENGTH; // message length
bank1 unsigned char MSG_FLAG; // set when <cr> seen

// Interrupt Service Routine
void interrupt IntServe(void) @ 0x10

 if (RCIF) {

 TEMP = RCREG;
 while (!TRMT); TXREG = TEMP;

 if (TEMP > 20) MSG[MSG_LENGTH++] = TEMP;
 if (MSG_LENGTH > 19) MSG_LENGTH = 19;

 if (TEMP == 13) MSG_FLAG = 1;
 }

 RCIF = 0;
 }
 }

The main routine now
Looks at MSG_FLAG. If set, a message is waiting in the buffer.
You can access the message by looking at MSG[i] for i=0..MSG_LENGTH
Once you receive the message, clear MSG_FLAG and clear MSG_LENGTH.

NDSU Serial Communications January 13, 2015

JSG 9

