
Timer1 Compare Mode:
Drive a pin high or low at a precisely controlled time

Interrupt Description Input Output Conditions Enable Flag

Timer 1 Trigger after N events
N = 1 .. 219

100ns to 0.52 sec

RC0
TMR1CS = 1

OSC/4
TMR1CS = 0

none N = (PS)(Y)
T1CON = 0x81: PS = 1
T1CON = 0x91: PS = 2
T1CON = 0xA1: PS = 4
T1CON = 0xB1: PS = 8

TMR1 = -Y

TMR1ON = 1
TMR1IE = 1
TMR1IP = 1

PEIE = 1

TMR1IF

Timer 1
Compare
Mode 1

Drive a pin high or low at a
precise time

Interrupt when TMR1 =
CCPR1

OSC/4 RC2 Interrupt when CCPR1 = TMR1
CCP1CON = 0x08: Set RC2
CCP1CON = 0x09: Clear RC2
CCP1CON = 0x0A: no change

CCP1IE = 1
TMR1ON = 1

PEIE = 1

CCP1IF

Timer 1
Compare
Mode 2

Drive a pin high or low at a
precise time

Interrupt when TMR1 =
CCPR2

OSC/4 RC1 Interrupt when CCPR2 = TMR1
CCP2CON = 0x08: Set RC1
CCP2CON = 0x09: Clear RC1
CCP2CON = 0x0A: no change

CCP12E = 1
TMR1ON = 1

PEIE = 1

CCP2IF

The PIC we use is able to measure time to 100ns. If you want to drive an output pin high or low at a
precise time (accurate to 100ns), Timer1 compare interrupts are used.

There are several reasons you might want to do this:
To output a precise frequency, the I/O pins need to be driven high/low at a precise time
To generate a pulse with a precise duration
To output a voltage between 0V and 5V, you can use vary the duty cycle of an I/O pin (termed
pulse with modulation). Timer1 Compare allows you to adjust this duty cycle very precisely.

Output a Precise Frequency: Capture1.C
Problem: Output the note F4 (349.228Hz) on pin RC0

Solution: To generate this frequency, you need to toggle RC0 every 14317 clocks (rounded down)

N = ⎛
⎝

10,000,000
2⋅349.228Hz

⎞
⎠ = 14317.29

Assume Timer1 is set up with PS = 1 and TMR1 = 0. To trigger a Timer1 interrupt at time 14317, just set

CCPR1 = 14317

When TRM1 = CCPR1, the interrupt triggers and you toggle RC0. The next interrupt should be 1431
clocks later, so increment CCPR1 by 14317

CCPR1 += 14317

The next next interrupt should then be 14317 clocks after that. And so on and so on.

Essentially, each interrupt you
Toggle RC0, and
Set up the next interrupt 14317 clocks in the future, from the previous interrupt.

NDSU Timer1 Compare September 22, 2016

JSG - 1 -

Code: Interrupt Service Routine
void interrupt IntServe(void)
{
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 RC0 = !RC0;
 CCPR1 += 14317;
 CCP1IF = 0;
 }
 }

Interrupt Set Up:
// set up Timer1 for PS = 1
 TMR1CS = 0;
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// set up Compare for no change
 CCP1CON = 0x0A;
 CCP1IE = 1;
 PEIE = 1;

// turn on all interrupts
 GIE = 1;

That's pretty much it: interrupts do all the work from here on.

Compare1.C: RC0 outputs a 349.228Hz using Timer1 Compare interrupts

NDSU Timer1 Compare September 22, 2016

JSG - 2 -

If you change the number 14317 to a variable and change it with the key pressed, you can build an 8-key
piano where the notes are precise (within 1/2 clock).

Generating a Precise Pulse Width
Problem: Every time you press RB0, output a pulse that is precisely 10ms long.

Solution: Use two different interrupts:
INT0 records the time that the button was pressed (time of rising edge on RB0). RC0 is set at that
time.
Compare1 kicks in 10ms later. At that time, RC0 is cleared.

RB0

INT0
Set RC2

Timer1 Compare 1
Clear RC2

10msRC0

Note that 10ms is equal to 100,000 clocks - more than TMR1 can count up to (max = 65,536: it's a 16-bit
counter.) To bring this in range, use a pre-scalar of 8 for TMR1. With this

10ms = 100,000 / 8 = 12,500

Compare1 interrupt should kick in 12,500 counts on TMR1 after the INT interrupt:

Code: Interrupt Service Routine:

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (INT0IF) {
 RC0 = 1;
 CCPR1 = TMR1 + 12500; // 10ms with PS = 8
 INT0IF = 0;
 }
 if (TMR1IF) {
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 RC0 = 0;
 CCP1IF = 0;
 }
 }

Interrupt Set Up:

// set up INT0 for rising edge
 INTEDG0 = 1;
 INT0IE = 1;

NDSU Timer1 Compare September 22, 2016

JSG - 3 -

 TRISB0 = 1;
// set up Timer1 for PS = 8
 TMR1CS = 0;
 T1CON = 0xB1;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// set up Timer1 Compare for no change
 CCP1CON = 0x0A;
 CCP1IE = 1;
 PEIE = 1;

Resulting Signal on RC0:

Compare2.c: A 10ms pulse is generated every time you press RB0

Note that you could also use pin RC2, where the Timer1 Compare interrupt automatically clears RC2
when TMR1 = CCPR1.

Example 3: Pulse Width Modulation (PWM.C)
A third use of Timer1 Compare is to generate a pulse width modulation with a precise duty cycle. The
idea is this:

Set up Timer1 to run with a pre-scalar of 1.
Every Timer1 interrupt you set RC0 (TMR1 = 0x0000)
When Timer1 = CCPR1, clear RC0

By adjusting CCPR1 from 0x0001 to 0xFFFF, you can change how long RC0 is on from
1 clock out of a period of 65,536 clocks (0.0015%), to
65535 clocks out of a period of 65,536 clocks (99.998%),
With 65,536 steps between 0% and 100% on

This is called pulse width modulation.

NDSU Timer1 Compare September 22, 2016

JSG - 4 -

Actually, you can't quite get to 0% or 100%. It takes about 50 clocks to call an interrupt. The min and
max duty cycle is then

min: 50 / 65,536 (0.076%)
max: 65,486 / 65,536 (99.924%)

Timer1 Interrupt
TMR1 = 0x0000

Compare1 Interrupt
TMR1 = CCPR1

6.5536ms

To generate a waveform which in 1.00V on averatge, we want a duty cycle of 20%

PWM = ⎛
⎝

1V
5V
⎞
⎠ = 20%

CCPR1 should then b 25% of its maximum value:

CCPR1 = 0.25 ⋅ 65, 536 = 13, 107

Code: PWM.C

Interrupt Service Routine:
// Global Variables
unsigned long int TIME;

// Interrupt Service Routine

void interrupt IntServe(void)
{
 if (TMR1IF) {
 RC0 = 1;
 TIME = TIME + 0x10000;
 TMR1IF = 0;
 }
 if (CCP1IF) {
 RC0 = 0;
 CCP1IF = 0;
 }
 }

NDSU Timer1 Compare September 22, 2016

JSG - 5 -

Interrupt Set-Up:

// set up Timer1 for PS = 1
 TMR1CS = 0;
 T1CON = 0x81;
 TMR1ON = 1;
 TMR1IE = 1;
 TMR1IP = 1;
 PEIE = 1;
// set up Timer1 Compare for no change
 CCP1CON = 0x0A;
 CCP1IE = 1;
 PEIE = 1;

Main Routine:
 CCPR1 = 13107; // 20% duty cycle

 while(1) {
 LCD_Move(0,0); LCD_Out(TIME + TMR1, 7);
 }

If you change CCPR1, it changes the duty cycle as

%ON = ⎛
⎝

CCPR1
65,536

⎞
⎠ ⋅ 100%

PWM.C: A 20% duty cycle square wave is output on RC0, resulting in its average voltage being 1.000 (20% of 5.00V)

NDSU Timer1 Compare September 22, 2016

JSG - 6 -

