
More Fun with A/D Converters
The A/D input allows you to input numbers (0 to 1023) into the PIC processor with a potentiometer. This illustrates
some of the things this allows you to do:

Electronic Trombone: Set the frequency using the analog input. Play a note when you press RB0.
LED Flashlight: Vary the brightness of a NeoPixel using the potentiometer from 0% to 100% on in 255
steps.
LED Flashlight (take 2): Vary the color of the NeoPixel using the potentiometer
Stepper Motor Position Control (Telerobotics): Have a stepper motor follow the position of the
potentiometer from 0 steps (A/D = 0) to 200 steps (A/D = 1023).

- This also makes the stepper motor a temperature indicator if the input voltage is temperature
- Or a light indicator

Stepper Motor Speed Controller: Have the speed of the stepper motor set by the analog input
Multi-Meter. Turn your PIC into a volt / ohm / light / temperature meter.

Electronic Trombone:
Requirement: Play notes ranging from 100Hz to 200Hz on pin RC0 as you press RB0. The frequency is continuously
adjustable using the analog input (potentiometer on your PIC board).

From previous code, the following routine plays notes C2 to C2

while(1) {
 if (PORTB) RC0 = !RC0;
 if (RB0) for(i=0; i<4771; i++);
 if (RB1) for(i=0; i<4250; i++);
 if (RB2) for(i=0; i<3786; i++);
 if (RB3) for(i=0; i<3574; i++);
 if (RB4) for(i=0; i<3184; i++);
 if (RB5) for(i=0; i<2837; i++);
 if (RB6) for(i=0; i<2527; i++);
 if (RB7) for(i=0; i<2385; i++);
 }

If you replace the hard-coded numbers with a number based upon the A/D reading, you can vary the frequency on the
fly. In C, the executing time depends upon the code. To get an accurate measure, start with code close to what we'll
need in the end:

 while(1) {
 A2D = A2D_Read(0);
 N = 2000 - 0.5678*A2D;
 if(PORTB) RC0 = !RC0;
 for(i=0; i<N; i++);
 }

Experimentally, the extremes produce:
A/D = 0 N = 2000 f = 116.04Hz
A/D = 1023 N = 1419 f = 154.39Hz

From this,

Hz ≈ −0.0660N + 248

NDSU More Fun with A/D Converters ECE 376

JSG - 1 - February 21, 2020

or
100Hz N = 2243 A/D = 0
200Hz N = 728 A/D = 1023

giving the function

N = 2243 − 1.4809 ⋅ A/D

This results in
0V A/D = 0 f = 103.77 Hz
5V A/D = 1023 f = 278.82 Hz

A little more adjustment would get you from 100Hz to 200Hz as you adjust the potentiometer.

LED Flashlight: Brightness Control
Previous code allowed us to drive a NeoPixel using a PIC processor. The global variables RED, GREEN, and BLUE
set the brightness of the NeoPixel from 000 (off or 0mA) to 255 (100% on or 20mA).

To change the brightness of the NeoPixels using the A/D converter, use the following code.

 while(1) {
 A2D = A2D_Read(0);
 X = A2D/4;
 LCD_Move(1,0); LCD_Out(X, 0, 3);

 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);
 NeoPixel_Display(X, X, X);

 Wait(1);
 }

NDSU More Fun with A/D Converters ECE 376

JSG - 2 - February 21, 2020

LED Flashlight: Hue Control
Instead of making all colors the same intensity, producing white light, update each color one at a time. As you hold
down one of the buttons, the brightness of that color changes according do the A/D input:

RB2 Blue
RB1: Green
RB0: Red

One version of the main routine to do this:

 while(1) {

 A2D = A2D_Read(0);

 X = A2D / 4;
 if (RB0) RED = X;
 if (RB1) GREEN = X;
 if (RB2) BLUE = X;

 LCD_Move(0,10); LCD_Out(X, 0, 3);
 LCD_Move(1, 0); LCD_Out(RED, 0, 3);
 LCD_Move(1, 5); LCD_Out(GREEN, 0, 3);
 LCD_Move(1,10); LCD_Out(BLUE, 0, 3);

 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);
 NeoPixel_Display(RED, GREEN, BLUE);

 Wait(5);
 }

NDSU More Fun with A/D Converters ECE 376

JSG - 3 - February 21, 2020

Stepper Motor: Position Control (Telerobotics)
Connect the potentiometer to your arm so that as you move, the potentiometer voltages changes with you. Have the
stepper motor follow the potentiometer as

0V = 0 steps
5V = 200 steps
Proportional in-between

 while(1) {
 A2D = A2D_Read(0);
 REF = A2D * 0.1955;

 if (STEP < REF) STEP = STEP + 1;
 if (STEP > REF) STEP = STEP - 1;

 PORTC = TABLE[STEP % 4];

 LCD_Move(0,8); LCD_Out(REF, 0);
 LCD_Move(1,8); LCD_Out(STEP, 0);

 Wait_ms(20);

 }

Stepper Motor: Light Sensor
Make the stepper motor indicate the light level as

1 Lux 0 steps
100 Lux 200 steps

This is the same as the previous solution:
First, convert light to voltage.
Once it's a voltage, read the voltage with the A/D input and use that to control the stepper position.

NDSU More Fun with A/D Converters ECE 376

JSG - 4 - February 21, 2020

Multi-Meter
Turn your PIC board into

A volt meter
An Ohm meter
A light sensor
A temperature sensor

Volt Meter: The A/D reading is proportional to voltage
0 = 0.00V
1023 = 5.00V

The calibration function is then

Volt = 0.0048876 ⋅ A/D

If you want to display this to 2 decimal places, scale this by 100 (so 100 means 1.00 Volts)

Code:
 while(1) {

 A2D = A2D_Read(0);

 VOLT = 0.488 * A2D;

 LCD_Move(1,8); LCD_Out(VOLT, 5, 2);

 }

NDSU More Fun with A/D Converters ECE 376

JSG - 5 - February 21, 2020

Ohm Meter: You can convert resistance to voltage using a voltage divider. Assuming a 1k resistor

+5V

1k

R

to RA0

V = ⎛
⎝

R
R+1000

⎞
⎠ 5

or the A/D reading will be

A/D = ⎛
⎝

R
R+1000

⎞
⎠ 1023

Solving backwards, you can compute the resistance given the A/D reading

R = ⎛
⎝

A/D
1023−A/D

⎞
⎠ 1000Ω

Code:
 while(1) {

 A2D = A2D_Read(0);
 OHM = 1000.0 * (A2D / (1023.0 - A2D));

 LCD_Move(1,8); LCD_Out(OHM, 5, 0);

 Wait_ms(10);

 }

NDSU More Fun with A/D Converters ECE 376

JSG - 6 - February 21, 2020

Light Meter: The light sensor in your lab kit has a light-dependent resistor:

with a light - resistance relationship of

R ≈ 100,000
Lux

Then

Lux = 100,000
R

Substituting for R from the previous sensor

Lux = 100,000
⎛
⎝

A/D
1023−A/D

⎞
⎠ 1000

Lux = (1023−A/D)
A/D ⋅ 100

Code:
 while(1) {

 A2D = A2D_Read(0);

 LUX = ((1023.0 - A2D) / A2D) * 100;

 LCD_Move(1,0); LCD_Out(A2D, 5, 0);
 LCD_Move(1,8); LCD_Out(VOLT, 5, 2);

 Wait_ms(10);

 }

NDSU More Fun with A/D Converters ECE 376

JSG - 7 - February 21, 2020

Temperature Sensor: Also in your lab kits is a temperature sensor:

R = 1000 ⋅ exp ⎛⎝
3930

T − 3930
298

⎞
⎠ Ω

where T is the temperature in degrees Kelvin

TKelvin = Celsius + 273
Solving for T

KelvinT =
⎛

⎝
⎜ 3930

ln ⎛⎝
R

1000
⎞
⎠ +

3930
298

⎞

⎠
⎟

CelsiusT =
⎛

⎝
⎜ 3930

ln ⎛⎝
R

1000
⎞
⎠ +

3930
298

⎞

⎠
⎟ − 273

Substituting for R

T =

⎛

⎝

⎜
⎜

⎜
3930

ln
⎛

⎝
⎜⎜⎜

⎛
⎝

A/D
1023−A/D

⎞
⎠ 1000

1000

⎞

⎠
⎟⎟⎟ +

3930
298

⎞

⎠

⎟
⎟

⎟
− 273 =

⎛

⎝
⎜ 3930

ln ⎛⎝
A/D

1023−A/D
⎞
⎠ +

3930
298

⎞

⎠
⎟ − 273

Code: Include Math.h for the log function (note: in C, log() is base e, log10() is base 10)
#include <pic18.h>
#include <math.h>

The main routine is then (multiplying T by 10x so you can display temperature to one decimal point)
 while(1) {

 A2D = A2D_Read(0);
 CELSIUS = 39300. / (log(A2D / (1023. - A2D)) + 13.1879) - 2730;

 LCD_Move(1,8); LCD_Out(CELSIUS, 5, 1);
 }

NDSU More Fun with A/D Converters ECE 376

JSG - 8 - February 21, 2020

