
FIR Filters

Finite Impulse Response (FIR) Filter Design:

Note:  The relationship between the impulse response of a filter (f(t)) and its frequency response (F(s)) is defined

by the LaPlace transform:

f(t) =
1

j2π ∫−j∞

+j∞
F(s)est ⋅ ds

F(s) = ∫−∞

+∞

f(t)estdt

This implies that

If two linear filters have identical impulse responses, the two filters will have the same

frequency response.

It really doesn't matter how you generate the impulse response of a filter.  All that matters is the result.

For example, suppose you have the filter:

Y = 


1

z−0.9

X

The series expansion of this filter is

Y = 
1 +

0.9
z +

0.92

z2
+

0.93

z3
+ ...X

or, in other words, the impulse response is

y(k) = (0.9)ku(k)

which is shown below:
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This suggests two methods to implement this filter.  As a recursive filter, you would program

zY = 0.9*Y + X

    Y = zY

Alternatively, you could use the series expansion and add the previous inputs with weightings of 0.9k:

for (i=100; i>0; i--) X[i] = X[i-1];     // remember the past 100 inputs

X[0] = a2d_read(0);

Y = 0;

for (i=0; i<=100; i++) Y += W[i] * X[i];   // W[i] = weighting = 0.9^i

Both methods are identical if you use an infinite number of terms in the series expansion.  After a point, the

weightings are small enough that you can truncate the series (at 100 terms in this example.)  This results in a

filter with a finite impulse response (101 samples after an impulse the output will be zero.  You quit remembering

the input past 100 samples in this case.)

Result:  A Finite Impulse Response Filter

Remembers the previous N values of the input (X),

Combines these previous N inputs with weightings corresponding to the impulse response of

the filter you want to implement,

Thus generating your desired filter.

The neat thing about FIR filters is

If you know the impulse response of the filter you want,

You know how to implement this filter.

Causality:

One problem with FIR filters is many impulse responses are non-causal (the time response happens before t=0).

For example,

Problem:  Find the impulse response of an ideal low pass filter which passes frequencies between 0 and 1

rad/sec.

Solution:  Apply the definition of LaPlace transforms:

F(s) =





1 ω < 1

0 otherwise

f(t) =
1

j2π ∫−j∞

+j∞
F(s)est ⋅ ds

f(t) =
1

j2π ∫−j

+j
est ⋅ ds
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f(t) = 


1

j2π






1
t e

st 


s=−j

s=+j

f(t) = 


1

j2π






1
t

 (e jt − e−jt

)

f(t) = 


1

2π






sin(t)

t



This is a sinc(t) function which is non-zero from .−∞ < t < ∞

To build an ideal low pass filter, you need a filter which is non-causal

If you could build such a filter, you can make lots of money in LasVegas.  (Push a button

whenever 10-black comes up in roulette.  When you see the voltage start to bounce, you know

10-black is going to come up in a few seconds. )

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
-0.04

0

0.04

0.08

0.12

0.16

Time (seconds)

f(t)

Impulse response of an ideal low-pas filter with a cut-of at 1 rad/sec

In order to build this filter, the following trick can be used:

Approximate this filter by assuming the impulse response is zero beyond -20 and +20 seconds

Delay the output by 20 seconds.

This results in the following impulse response:
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Note that this impulse response is close to that of an ideal low-pass filter (meaning the frequency response should

be close).  Note also that it is different, meaning that this is not truly an ideal low pass filter.

You can see this by plotting the frequency response of this filter.

a)  Assume a sampling rate of 10ms (meaning time is sampled every 0.01 second, or you remember the previous

4000 inputs over the past 40 seconds.

b)  Assume the weightings on these 4000 inputs is as shown above.

The frequency response will be equal to

G(s) = Σ W(i) ⋅ z−i

where

z = e jωT

MATLAB Code:  (y1 = the impulse response shown above sampled every 0.01 second)

t = [-20:T:20]'  +  1e-6;

f = 1 / (2*pi  *  1.26) * sin(t) ./ t ;

w = [0:0.01:3]';

s = j*w;

T = 0.4;

z = exp(s*T);

G = 0*w;

for i=1:length(f)

   G = G + f(i) * (z .^ (-i));

   end

plot(w,abs(G))
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On the plus side:

This is a very good low-pass filter, closely approximating an ideal low-pass filter.

If you want a better filter, extend the tails of the impulse response

This filter is very easy to implement:  all you need is to know the impulse response of your filter

On the minus side:

It involves remembering 400 previous inputs (requiring more RAM than is available of a PIC).

It involves 400 floating point multiplies and 400 floating point additions

It would take a PIC about 0.8 seconds to compute y(k) each sample and you only have 0.01

second to do so.

In short, a FIR filter is not a good option for a PIC.  A DSP (digital signal processor) is designed specifically for

this type of filter. 

Example 2:  Design an FIR filter with a corner at 2 rad/sec

Solution:

If you double the bandwidth, you double the speed of the filter

Speed up time 2x

f(t) = 2
1

2π






sin(2t)

2t




f(t) = 


1

2π






sin(2t)

t



This has the followng frequency response
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Example 3:  Design a filter which pases freqeuncies between 4 and 6 rad/sec

Solution:  Subtract

A low-pass filter with a corner at 6 rad/sec, minus

A low-pass filter with a corner at 4 rad/sec

f(t) = 


1

2π






sin(6t)

t

 − 

1

2π






sin(4t)

t
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FIR Summary

If you know the impulse response of your filter, you can implement it with an FIR filter

FIR filters are easy to design

FIR filters are easy to implement

But....

The require a LOT of floating-point computations

PIC processors are not designed for this

DSP processors are designed for this  ( ECE 444: Digital Signal Processors )
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