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Filters in the s-Plane

Transfer Functions and LaPlace Impedances

In essence, any circuit with an inductor or a capacitor is a filter. Each of these requires a differential equation to
describe the circuit due to the VI relationships being

—_a
V=Lg
for an inductor, or
—Ccw
I=C%
for a capacitor. If you assume all functions are in the form of
y — est
(which is the basic assumption behind LaPlace transforms), then differentiation becomes multiplication by 's'

dy _ st
J =g -e=sy

The transfer function of a circuit is short-hand notation for the differential equation relating the input and output.
For example, if a circuit is described by the following differential equation

ddy | od¥y | qdy _ 1ndx
F-l— F+ga+15y— 10a+3x
in LaPlace notation, this becomes

S3Y + 7s2Y + 9sY + 15Y = 10sX + 3X

or

_ 10s+3 )
Y= (s3+7sz+9s+15 X

The gain from X to Y is called the transfer function

_ 10s+3
G(s) = (s3+732+95+15)

Note that this goes either way:

- Given a differential equation, you can find the transfer function by replacing each derivative with 's'
+ Given the transfer function, you can find the differential equation by cross-multiplying and replacing each
's' with &
dt

Example: Find the differential equation relating X and Y

10s+3
Y
$3+752495+15

Solution: Cross multiply
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(s +75% + 95+ 15)Y = (10s + 3)X

PN H d
Replace each 's’ with

%+7‘%+9%+15y: 10% + 3x
Analyzing Filtes for Sinusoidal Inputs
The transfer function defines the relationship between X and Y for all 's'. If x(t) is a sinusoid, such as
X(t) = a- cos (wt)
then all you care about is the gain at one particular 's'. From Euler's identity
cos (mt) = 2(elot + e ot
Since LaPlace transforms assume that all functions are in the form of
y(t) =e

this means that x(t) only exists at s = jo and s = —jw. Likewise, you only care about the gain at these two values
of 's'.  Actually, you only need to analyze one of these: the other will just be the complex conjugate

Example: Find y(t) assuming
_ 10s+3
Y= (s3+752+95+15) X
and

X(t) = 3cos(4t)

Solution: x(t) is zero everywhere except for when s = +j4. So, analyze G(s) at s = j4

(L) u” 0.3973~2 —110°

s3+4752+9s+15
From output is gain times input:
y(t) = (0.39732 — 110°) - 3cos(4t)
y(t) = 1.1919 cos (4t — 110°)

When you analyze G(s) at S = jo, the answer will be a complex number:

- The amplitude is the gain: how much larger the output is than the input
- The angle is the phase shift: how much the output is shifted in time

If you have multiple inputs, you can use superposition to analyze each frequency separately.
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Example: Determine y(t) assuming
_ 10s+3
Y= (s3+7sz+95+15) X

X(t) = 3 cos(4t) + 5 cos(60t)

Solution: Treat this as two separate problems:
X(t) = 3 cos(4t)

s=j4

(L) =(0.39732 - 1109)

§3+75%+9s+15 ot
yl(t) = (039734 - 1100) .3 COS(4t)
ya(t) = 1.1919 cos (4t — 110°)

X(t) = 5 cos(60t)
s=j60

(L) =0.00282 - 173°

$3+752+9s+15 5=j60

YZ(t) = (000284 - 1730) -5 COS(GOt)
y2(t) = 0.0139 cos (60t — 173°)

The total answer is then
y() =y1+y2
y(t) = 1.1919 cos (4t — 110°) + 0.0139 cos (60t — 173°%)

Analysis of Filters: Bode Plots

Analyzing filters for sinusoidal inputs is fairly easy: just plug s = jw. If you want to look at how a filter behaves
over a range of frequencies, you can do this in MATLAB as follows

Example: Plot the gain vs. frequency for the following filter from 0 to 20 rad/sec

_ 10s+3
G(S) - (s3+752+95+15)
Matlab Code:

-->w = [0:0.01:20]";

-->s = J*w;

-->G = (10*s + 3) ./ (s-"3 + 7*(s."2) + 9*s + 15);
-->plot(w,abs(G));
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-->xlabel("rad/sec");
-->ylabel ("Gain®);

Gain
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radi/sec

Gain vs. Frequency for G(s)

Note that the plot (termed a Bode plot) is a good way to describe how this filter behaves.

« Frequencies near 2 rad/sec are passed with a gain as much as 1.5
+ Frequencies above 10 rad/sec are rejected, with a gain less than 0.2

Filter Design: Poles and Zeros

While analyzing a given filter is easy and straight-forward, designing a filter is a little more tricky. One way to
help see how the transfer function relates to the gain of a filter is to look at the filter's poles and zeros.

In general, G(s) will have a numerator and a denominator polynomial

_ &Q

G(s) = k(p(S)

« The zeros are the roots of the numerator polynomial

« The poles are the roots of the denominator polynomial.

Graphically, the vector (s + 5) is equal to the vector from -5 to the point s. This means another way to interpret
the gain of a filter is

I(distance from the zeros to jo
G(s)=k- =2 o)
I(distance from the poles to jm)

or, in other words

- Place zeros near frequencies where you want the gain to be small (multiply by a small number)
- Place poles near frequencies where you want the gain to be large (divide by a small number)
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Types of Filters

Filters are categorized into different types:

Filter Type Characteristic Example
Low-Pass Low-frequency gain is large (pass) ( 10 )
High-frequency gain is small (reject) s+10
High-Pass High-frequency gain is large (pass) (1_05)
Low-frequency gain is smalle (reject) s+10
Band-Pass High-frequency gain is small ( 2 )
Low frequency gain is small (5+14150)(s+1-50)

Mid-range frequency is large

A filter's order is the number of poles the filter has. In general, the more poles a filter has, the better the filter.

Certain pole and zero locations also have special names as well. These have certain characteristics:

RC Filter:

An n-pole RC filter has all n-poles on the real axis.

« It's advantage is you can build it with a passive RC filter (good)
- It's problem is it's a pretty poor filter.

For example, the gain of
n
SCNE
for n=1, 2, 3, and 4 is shown below. Note that

- Asn increases, the high-frequency gain gets smaller and smaller (good)
« However, the gain below 5 rad/sec starts to droop more an more (bad)

[0:0.1:50]";

3w;

-->G = 10 ./ (s+10);
-->plot(w,abs([G,G-"2,6.73,G6.74]));
-->xlabel("rad/sec");
-->ylabel("gain®);

|
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Butterworth Filter

If you use complex poles, you can do better. For example, take the case of n=5.

A 3rd-order RC filter with a corner at 10 rad/sec is

6= ()

One of these poles has to be real. The other four, however, could be moved along the circle centered at the origin
with a radius of 10. As you increase the angle of these poles, the gain at j10 increases. If you go too far, the gain
at j10 starts to go above one.

A Butterworth filter is the farthest you can slide the poles while keeping the maximum gain less than one

It turns out, the formula for an n-th order Butterworth filter is fairly easy:
« The magnitude of the poles is equal to the corner frequency

. [ 180°
- The angle between poles is (T)

For example, the location of a Butterworth filter with a corner at 1 rad/sec is given below:

N=2 N=3 N=4 N=5 N=6
Zeros none none none none none
poles |—1/ + 450 -1 ~1/+22.5° -1 1/ +15°
-1/ +60° -1/ +67.5° -1/ +36° —1/ +459°
-1, +72° -1/ +75°
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Pole Location for a 5th-Order Butteworth Filter with a Corner at 10 rad/sec

Butterworth Filters
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Gain of a Butterworth Filter for n=2 (red), 3 (magenta), 4 (blue), 5 (green)

Note that with a Butteworth filter,

- The more poles you have the closer it gets to an ideal low-pass filter.
« All poles have the same amplitude
- All poles have an equal spacing between them
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Chebychev Filter

If you can tolerate a gain larger than 1.00, you can do even better. These filters are called Chebychev Filters.

Unlike Butteworth filters, there are an infinite number of Chebychev filters - each depending upon how much
above 1.000 you allow the gain to reach.

The net result is a Chebychev filter is like a Butterworth filter, only

« The poles are located on an squashed circle which is stretched out past the bandwidth, and
- The poles are stretched further away.

From SciLab, the location of the poles for a Chebychev filter with a 0.2 ripple are given below.

N=2 N=3 N=4 N=5 N=6
Zeros none none none none none
poles |—1.60/ +50.7° -0.85 -0.72/ +38.50 -0.48 -0.47/+36.1°
-1.21/+695°% | -1.11,+77.8° | -0.76/+59.3° | -0.81/+69.8°
-1.06/+82.0° | -1.04~ +84.4°
X j10
X
j5
-ZLOI -5 D e 5 10 I I 15
-5
X
X [ -i10

Pole Location for a 5th-Order Chebychev Filter with a Corner at 10 rad/sec
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Chebychev Filters
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Gain of a Type-1 Chebychev Filter with 0.2 Ripple for n=2 (red), 3 (magenta), 4 (blue), 5 (green)

Chebychev Filters
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fminsearch()

Another way to design filters is to use the function fminsearch in MATLAB. This routine finds the minimum of a
function.

For example, suppose you want to find the square root of two. First, write an m-file in MATLAB

% function cost.m
function y=cost(z)
z*z - 2;

= e*e;
nd

o< @

The minimum of this function will be zero when z = 1.414. You can iterate in MATLAB to find the square root
of two

>> cost(4)
196
>> cost(3)
49
>> cost(2)
4
>> cost(1.414)

3.6482e-007

You can also find this with fminsearch

>> [a,b] = fminsearch("cost-®,4)
a =

1.4143

1.5665e-008

fminsearch iterates to find the minimum of the function called cost. The solution it found was 1.4143 which
resulted in an error of 1.566e-8
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Problem: Determine a filter of the form

G(s) :( as?+bs+c )

s3+ds2+es+c

which has a gain vs frequency equal to

« G(s)=1 for frequencies less than 2 rad/sec, and
+  G(s) =0 for frequencies above 2 rad/sec.

Step 1: Create an m-file where you pass it five numbers (a, b, ¢, d, €) and it returns how 'good' this filter is. Make
the minimum when it is equal to the ideal filter.
To write this function,

«  Compute G(s) for frequencies between 0 and 10 rad/sec.
- Calculate the difference between the gain of G(s) and the ideal gain
+ Define the cost (goodness of the filter) to be the sum-squared error

function y=cost(z)

a = z(1);

b = z(2);

c = z(3);

d =z(4);

e = z(b);

w = [0:0.1:5]";

S = j*w;

Gideal = 1*(w<2);

G = (@a*(s.™2) + b*s + ¢c) ./ (5.3 + d*(s."2) + e*s+C);
e = abs(Gideal) - abs(G);

y = sum(e .N 2 );

plot(w,abs(Gideal) ,w,abs(G));
pause(0.01);

The last two lines are just for fun: they plot the current filter vs. the ideal filter so you can see how things are
progressing.
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) Figure 1

File Edit View Insert Tools Deskbop ‘Window Help

~=lolx|

DG ds|b|220UDE4 20880

>> cost{[0,0,1,3,3])

The 'best' filter is thus

ans =

7.5926

»> % = fminsearch('cost’,[0,0,1,3,31);
= 7

0.4371 -0.0000 3.1036 1.5736 3.5070

-
if! 5>

G(s) = ( 0.437152+3.1036

S3+1.573652+3.507OS+3.1036)
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