
Digital Sensors

Background:

Microcontrollers are small and cheap enough that several sensors have a microcontroller incorporated into
their design. This makes interfacing to these sensors easy with another microcontroller: all data is sent
and received via digital communications.

The most common form of communications is Serial Perihperial Interface (SPI). This requires
A chip select line to let the sensor know you are sending data
A clock line, to let the sensor know when the data is valid,
A data out line - where the sensor sends data out to the microcontroller, and
A data in line - where the microcontroller sends data to the sensor.

For example, the DS1620 is a digital temperature sensor. For this sensor, the data out and data in line are
shared (saving one I/O pin). You can split this into the data out and data in using a 1k resistor:

When DQ is input, DQ is passive and the Data In line sets the voltage at DQ.
When DQ is output, the DS1620 sets the voltage on the data line, and drives Data Out.

Otherwise, it's a normal SPI interface.

To talk to the DS1620, look for the timing diagrams in the data sheets:

This tells you to:

NDSU Digital Sensors / GPS August 14, 2012

JSG - 1 -

Pull RST high
Clock in the data onto the DQ line, with the data valid on the rising edge of the clock, least
significant bit first, and
Pulse RST low then high to end the message.

Next, you need to know what messages to send. Again from the data sheets:

Command Description
0xAA Read Temperature
0xEE Start Temperature Conversion
0x01 Write to TH
0x02 Write to TL
0x0C Write to CONFIG
0x0C
0x00

Set up for continuous
conversion

Finally, you need to know how to interprit the data when it comes back.

To drive a DS1620, let's use bottom-up programming. First, write a routine which writes or reads one
byte, LSB first. Assume

RC0 = RST
RC1 = CLK
RC2 = DQ

void DS1620_Write(unsigned char DATA) {
 unsigned char i;
 TRISC1 = 0;
 TRISC2 = 0;

 RC1 = 0; // start with CLK = 0
 RC0 = 1; // start with RST = 1

 for (i=0; i<8; i++) {
 if (DATA & 1) RC2 = 1; else RC2 = 0;
 RC1 = 1;
 DATA = DATA >> 1;
 RC1 = 0;
 }
 }

NDSU Digital Sensors / GPS August 14, 2012

JSG - 2 -

unsigned char DS1620_Read(void) {
 unsigned char RESULT, i;
 TRISC1 = 0;
 TRISC2 = 1; // DQ = output (input to PIC)
 RESULT = 0;
 for (i=0; i<8; i++) {
 RESULT = RESULT >> 1;
 RC1 = 1; // read on the rising edge of CLK
 if (RC2) RESULT = RESULT + 0x80;
 RC1 = 0;
 }
 return(RESULT);
 }

Next, write a routine which sends the connand {0x0C, 0x00} to set up the DS1620 for continuous
conversion

void DS1620_Init(void) {
 TRISC0 = 0;
 RC0 = 1; // start of message
 DS1620_Write(0x0C);
 DS1620_Write(0x00);
 RC0 = 0;
 }

Finally, write a routine which reads the temperature

float DS1620_Get_T(void)
{
 int DATA;
 float CELCIUS;

 TRISC0 = 0;
 RC0 = 1; // start of message
 DS1620_Write(0xAA) // read temperature
 DATA = DS1620_Read(); // high byte first
 DATA = (DATA << 8) + DS1620_Read();
 RC0 = 0;

// convert to Celcius
 if (DATA & 0x0100) DATA = DATA | 0xFF00; // sign extend
 CELCIUS = 0.5 * DATA;
 return(CELCIUS); // temperature in C
 }

NDSU Digital Sensors / GPS August 14, 2012

JSG - 3 -

GPS
A GPS sensor is also a digital sensor. It's output is typically 9600 baud asynchronous, however (SCI).
Likewise, the SCI module is needed for reading GPS data.

The SparkFun modules are rather convenient: power them up and a red light turns on. When GPS is
locked on, the red light blinks. Once per second, a GPS message is sent out, with a typical message
looking like the following:

$GPGGA,152410.979,4731.42559,N,09233.10091,W,1,10,0.8,436.16,M,-30.59,M,
$GPGSA,A,3,15,05,08,29,27,18,21,26,06,22,,,1.4,0.8,1.1*30
$GPGSV,3,1,12,21,74,292,42,15,68,119,47,18,56,265,45,26,38,053,46*76
$GPGSV,3,2,12,48,25,230,23,29,25,190,39,06,24,310,39,27,18,120,42*7F
$GPGSV,3,3,12,03,15,319,,22,13,258,33,05,11,074,40,08,08,026,33*7D
$GPRMC,152410.979,A,4731.42559,N,09233.10091,W,0002.15,172.05,140312,,
$GPVTG,172.05,T,,M,0002.15,N,00003.98,K,A*08
$GPZDA,152410.979,14,03,2012,00,00*55

Each message has fields separated by commas. The GPGGA message has the following data:

Field Data Meaning
1 GPRMC Recommended minimum GPS data

2 152410.979 Time: 15:23:10.979 UTC
3 A A = OK, V = warning

4,5 4731.42559,N Latitude: 47d 21.42559'
6,7 09233.10091,W Longitude: 092d 33.10091'
8 0002.15 Speed (knots)
9 172.05 Direction of motion (degrees)

10 140312 Date: 14:03:12
March 14, 2012

This brings up two problems:
How to read in the GPS data into a buffer, and
How to parse the data, and
How to convert to meters.

Reading GPS data into a buffer:

You pretty much have to use SCI interrupts since you don't know when the data is coming in. An
interrupt routine which looks for a carriage return (binary 13) to terminate each message and stores it into
an array MSG[] follows:

If you want to check if the message was a GPRMC message, look for an 'R' in the third spot. If found,
copy MSG to a buffer for later processing.

NDSU Digital Sensors / GPS August 14, 2012

JSG - 4 -

void interrupt IntServe(void) {
 if (RCIF) {

 RC0 = !RC0; // debug info. Should toggle each char
 TEMP = RCREG;
 while(!TRMT); TXREG = TEMP;

 MSG[N] = TEMP;
 N += 1;
 if (N > 80) N = ;
 if (TEMP == 13) {
 if (MSG[3] == 'R') { // GPRMC message detected
 for (i=0; i<80; i++) GPS[i] = MSG[i];
 FLAG = 1;
 RC1 = !RC1; // debug info - should toggle 1/sec
 }
 N = 0;
 }

 RCIF = 0;
 }

Parse the Data

In the main routine, you can watch for FLAG=1. This means you have GPS data. To parse the data, you
need to pull out the various fields. Fortunately, each message and each field is fixed length.

 while(1) {
 if (FLAG) {

// Latitude in minutes

 LATITUDE = (GPS[20]-'0')*600 +
 (GPS[21]-'0')*60 +
 (GPS[23] - '0')*10 +
 (GPS[24] - '0')*1 +
 (GPS[25] - '0')*0.1 +
 (GPS[26] - '0')*0.01 +
 (GPS[27] - '0')*0.001;

// Longitude in minutes

 LONGITUDE = (GPS[33] - '0')*6000 +
 (GPS[34] - '0')*600 +
 (GPS[35] - '0')*60 +
 (GPS[37] - '0')*10 +
 (GPS[38] - '0')*1 +
 (GPS[39] - '0')*0.1 +
 (GPS[40] - '0')*0.01 +
 (GPS[41] - '0')*0.001;

// Speed in Knots

 KNOTS = (GPS[47] - '0')*1000 +
 (GPS[48] - '0')*100 +
 (GPS[49] - '0')*10 +

NDSU Digital Sensors / GPS August 14, 2012

JSG - 5 -

 (GPS[50] - '0')*1 +
 (GPS[51] - '0')*0.1 +
 (GPS[52] - '0')*0.01 +

 FLAG = 0;

 NORTH = LATITUDE * 1849.12;
 WEST = LONGITUDE * 1334.60;
 SPEED = KNOTS * 0.5144;

 }

If you want to convert to normal units, at Fargo, ND, this is
Polar Radius = 6,356.8 km

1 minute = 1849.12 meters
Equatorial Radius = 6,378.1 km

1 minute = 1,855.31 meters at the equator
1 minute = 1,334.60 meters at 46 degrees north (Fargo)

1 Knot = 0.5144 meters/second

Doing this, you can keep track of where you are with a PIC processor. As an example, walking around a
parking lot last March resulted in the following plot:

Relative position from start: N (blue), E (green)

Plotting your position

NDSU Digital Sensors / GPS August 14, 2012

JSG - 6 -

Note that GPS has some noise. For the first 10 minutes, the GPS receiver sat at one spot on the ground.
Zooming in on this region shows that your GPS position drifts about 1 meter over 10 minutes. GPS isn't
accurate enough to sink a golf ball in a hole, but good enough to figure out where your dog goes at night.

NDSU Digital Sensors / GPS August 14, 2012

JSG - 7 -

NDSU Digital Sensors / GPS August 14, 2012

JSG - 8 -

