
CPU Architecture

& Boolean Math
ECE 376 Embedded Systems

Jake Glower - Lecture #1
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Background:

Microcontrollers are a type of computer which is designed for controlling devices,
such as toasters, vacuum cleaners, etc. Most are built around a microcomputer with
several features added:

Memory is typically incorporated within the microcontroller, allowing a single-chip
design.

Timers are added, and

Analog inputs / output are often added.

For example, the microcompuer and corresponding microcontroller are

Intel: 8080 / 8051

Motorola: 6800 / 6812

MicroChip & PIC18F4620
Microchip: Small company which specializes in microcontrollers for start-up companies.

PIC18F4620: Inexpensive, works, easy to use, tools are free

Very similar to other microcontrollers. (They're all about the same)

We have access to the registers (allows for low-level programming)

Microcontrollers

Inexpensive: $0.45 for PIC10F200

Versitile: Change code and you change the operation

Overkill: Many problems can be solved using hardware, but for $0.45, why not?

Changing hardware is expensive:

Recertify, change the asssembly line, rewrite code

Changing software is free (sort of)

Three Levels of Programming

Low-Level (ECE 376)

Direct access to hardware and registers

Low level routines to read sensors, drive actuators, set timing.

Mid-Level (ECE 476, Rasberry Pi, Arduino)

Call low-level routines

Make a quad-copter hover, follow commands

High-Level (Computer Science)

Call mid-level routines

AI: get quad copters to swarm, find hottest spot in the room, etc.

CPU Architecture

All computers have five main sections:

Program Memory

Data Memory

Stack Memory (to store data such as the return address when you call a subroutine)

Registers (to store data which is being manipulated), and

Arithmetic Logic Unit (ALU) which does the addition, subtraction, etc.

Microcontroller: All five on a single chip

Good: No interfacing chips

Bad: You're stuck with what you have

4-bit, 8-bit, 16-bit, 32-bit

Number of bits for a memory read / write / add / subtract

PIC18F4620: 8-bit (simple: you have to start somewhere)

Von-Neuman Architecture

Most computers (Motorola, Intel, etc.)

Program / Data / Stack are all the same size (8-bits)

Allows you to allocate memory as needed

Requires multiple memory reads for a single operation

Data can over-write the program (bad)

Address Allocation Memory Type

0 Data RAM

4,095

4,096 Stack RAM

16,583

16,584 Program RAM or FLASH
EPROM

65,536

Harvard Architecture (PIC)

Program / Stack / Data are all separate

You can optimize the size of each

Good: Each instruction only takes one clock (one memory fetch)

Bad: Can't reallocate memory

PIC18F4620:

Program Memory
16-bits

Data Memory
8-bits

Stack Memory
15-bits

0000 start
.
.
.
.
.

32,767 end

00 start
.
.
.

3968 end

00 start
.
.

31 end

ROM:

ROM is used for

Vectors (Tell the CPU where to go on certain events, such as power on, 10ms clock tic,
etc.)

Tables (information the program will use. Feedback gains, wait times, etc. This allows
you to change the program by changing data in the table.)

Main Routine (tells the CPU what to do)

Subroutines (small parts of the mainline routine)

Interrupt Service Routines (programs that are called by hardware events, like a switch
closing or 10ms clock tic).

All of this must fit in the 32k ROM.

It's preferred if you keep these blocks together to simplify debugging. (The address
tells you what the data means. In a table, it's data. In the main routine, it's an
instruction, etc.)

RAM

RAM is used for

Sending and receiving data from the microcontroller

Saving data from program execution.

RAM split into banks of 4096 bytes.

Data RAM is located in the low bank at address 0x0000 to 0x0FFF (0 to 4095).

Special functions are located 0xFF00 to 0xFFFF.

For us, this doesn't mean much: you can have a single array that's 3198 bytes of 3198
variables, each of which is one byte.

Note: This is an issue for future versions of the PIC18F4620

To access memory above 0x0FFF, you need to switch banks

Stack

Stores the return address from a subroutine call

Each call pushes the return address onto the stack

Each return pops the return address off of the stack

31-level stack means

You can nest subroutines 31-levels deep

If you go beyond that, the return address is lost (program crashes)

Recursion is not allowed with a PIC processor

Pipeline & Program Timing

A PIC processor has a 2-level pipeline

Level 1: The next instruction in the program (moved to Level 2)

Level 2: The present instruction being executed.

Result

One clock per instruction

Two clocks if the instruction is a jump

- Prefetch got the wrong instruction

Clock Memory Pre-Fetch Program Execution

1 0x800 -

2 0x801 0x800

3 0x802 0x801

4 0x803 0x802

Registers

Helps with hardware design

Easier to add two known locations (X & Y) than two arbitrary locations

Motorola 6812:

Six registers for you to use

PIC18F4620:

One register for you to use (W)

Good:

No choice.

Everything goes through W

Bad:

Code can get convoluted

Boolean Math

In a computer, everything is binary: data is only stored as ones and zeros. Likewise,
all math is done using binary arithmetic.

Definitions:

Bit: 1 or 0. A single flip flop or capacitor whose output is 5V (1) or 0V (0).

Nibble: 4 bits.

Byte: Eight bits.

Word: More than one bit. 'Word' has no specific size in general.

Binary: Base 2 arithmetic. 0b01010 means 'binary 01010'

Decimal: Base 10 arithmetic Default is base 10.

Hexadecimal: Base 16 arithmetic. 0x1234 means 'hexadecimal 1234'

Base N Numbers:
Base 10 Base 2 Base 16

 1234 means

1 x 103 +
2 x 102 +
3 x 101 +
4 x 100

10101 means

1 x 24 +
0 x 23 +
1 x 22 +
0 x 21 +

1 x 20

1234 means

1 x 163 +
2 x 162 +
3 x 161 +
4 x 160

Range of N bits

Base 10 Base 2 Base 16

0 .. 10N - 1

3 digits

000 .. 999

0 .. 2N - 1

8 bits

000 .. 255

0 .. 16N - 1

4 nibbles

0000 .. 65,535

Hexadecimal
More convenient than binary

Easier to see bits than decimal

Program
Memory
16-bits

Hexadecim
al

Binary Decimal Hexadecim
al

Binary

0 0 0000 8 8 1000

1 1 0001 9 9 1001

2 2 0010 10 A 1010

3 3 0011 11 B 1011

4 4 0100 12 C 1100

5 5 0101 13 D 1101

6 6 0110 14 E 1110

7 7 0111 15 F 1111

Hexadecimal Examples:

Convert the number 0x1234 to binary.

Solution: Go nibble by nibble:

Hexadecimal 1 2 3 4

Binary 0001 0010 0011 0100

Convert 0b00101010100100101010 to hexadecimal.

Solution: Separate into groups of 4 bits (nibbles)

0b 0010 1010 1001 0010 1010

0x 2 A 9 2 A

The answer is 0x2A92A.

Boolean Math

Addition: Add just like you do in base 10. Just remember to carry a 2 (base 2) or
carry a 16 (hexadecimal)

Example:

Carry (1) (1)

0x4 A 2 6

+ 0x9 C 8 D

14 22 (16 + 6) 11 19 (16 +
3)

Result 0xD 6 B 3

0x4A26 + 0x9C8D = 0xD6B3

Logical Operations:
AND:

- 0 = bit clear
- 1 = no change

OR

- 0 = no change
- 1 = set

XOR

- 0 = no change
- 1 = toggle

A B A & B
(and)

Comment A | B
(or)

Comment A ^ B
(xor)

Comment

0 0 0 Bit clear 0 0

0 1 0 1 1

1 0 0 1 bit set 1 bit toggle

1 1 1 1 0

2's Compliment Notation
The way you express negative numbers

Angles: Add or subtract 360 degrees

8-bit: Add or subtract 256

0 = 360 deg

90 deg

180 deg

270 0deg

-90 deg

-180 deg

0 = 256

64

128

192

-64

-128

-0-0

Base 360 (angles) Base 256 (8-bit binary)

-90 degrees

+270 degrees

-64

+192

