# **Binary Inputs**

#### **ECE 376 Embedded Systems**

#### Jake Glower - Lecture #4

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

# **Binary Inputs: PORTA..E**

The PIC18f4620 chip has

- 33 I/O lines
- Split into five ports:
- 0V = logic 0
- 5V = logic 1

|                  | PORTA | PORTB | PORTC         | PORTD         | PORTE |
|------------------|-------|-------|---------------|---------------|-------|
| Pins             | 27    | 3340  | 1518,<br>2426 | 1922,<br>2730 | 3     |
| Binary<br>Input  | 5     | 8     | 8             | 8             | 3     |
| Binary<br>Output | 5     | 8     | 8             | 8             | 3     |
| Analog<br>Input  | 5     | 5     | -             | -             | 3     |



#### **Types of Switches**

- SP: Single Pole. 2 connectors
- DP: Douple Pole. Two sets of 2 connectors
- ST: Single Throw. Open or closed
- DT: Double Throw. Center lead can connect to two different leads



#### **Reading a SPST Switch**

- + Convert Open / Closed to 0V / 5V
- R: Limits current when switch is closed
- C: Eliminates bouncing (multiple-reads)
- R2: Dummy protection



# Y = X > 2.3V

Design a circuit which outputs

- +5V when the input is more than 2.3V
- 0V when the input is less than 2.3V

Solution: Use a op-amp (such as the MCP602) in your lab kit



## Y = Temperature > 20C

- Y = +5V when the temperature is above +20C
- Y = 0V when the temperature is below +20C

Solution: Use a Thermistor and a voltage divider

- R(20C) = 1250 Ohms
- Vx(20C) = 2.778V



#### I/O Characteristics:

- At 20C (2.778V), the output switches.
- For voltages below 2.778V (T > 20C), the output goes to 5V
- For voltages above 2.778V (T < 20C), the output goes to 0V



Input / Output Characteristic of the Comparitor

# **Comparitors and Noise**

Problem with comparitors:

- If the input signal has noise on it, you can get chatter at the 0-1 and 1-0 transistions.
- This chatter can mess up counters, which interprit this as multiple 0-1 transistions.



## **Removing Chatter:**

- Software: Add a delay
- Hardware: Add hysteresis
  - The output switches to +5V when the temperature goes above +20C
  - The output switches to 0V when the temperature drops below +15C



# Schmitt Trigger:

As Va increases, Output Decreases

- Connect to the input
- Turn on at +20C



- Va = 2.7492V
- Apply 2.7492V to + input

Turn off at +15C

- R = 1576.2 Ohms
- Va = 2.9934V

Slope = 
$$20.5$$

• 
$$\left(\frac{3V-6V}{2.9934V-2.7492V}\right) = 20.5$$

• R1/R2 = 20.5



#### **Schmitt Triggers and Noise**

Hysteresis adds two thresholds:

- Y = 5V when X < 2.7492V
- Y = 0V when X > 2.9934V
- No change when 2.74V < X < 2.99V

By adding a hysteresis, chatter is avoided

• This prevents multiple counts



#### **Changing Sensors**

Change R and you can measure...

- CdS sensors convert light to resistance
- Photovoltaic sensors convert light to voltage (current actually...)
- Gas sensors convert O2, CO2, methane, etc to a resisance or voltage
- Strain gages convert strain (or weight or pressure) to resistance
- Tachometers convert motor speed to a voltage.

10,000+ sensors are available from Digikey

|      | iai.Vou                                                                              |
|------|--------------------------------------------------------------------------------------|
|      | All Products 🗸                                                                       |
|      |                                                                                      |
|      |                                                                                      |
| Sens | sors, Transducers - 1,613 New Products                                               |
|      |                                                                                      |
|      | Accessories (6,216 Items)                                                            |
|      | Amplifiers (1,786 Items)                                                             |
|      | Camera Modules (514 Items)<br>Color Sensors - Industrial (36 Items)                  |
|      | Color Sensors (80 Items)                                                             |
|      | Current Sensors (2,488 Items)                                                        |
|      | Encoders - Industrial (4,535 Items)                                                  |
|      | Encoders (4,470 Items)                                                               |
|      | Float, Level Sensors - Industrial (195 Items)                                        |
|      | Float, Level Sensors (1,061 Items)                                                   |
|      | Flow Sensors - Industrial (49 Items)                                                 |
|      | Flow Sensors (445 Items)                                                             |
|      | Force Sensors - Industrial (339 Items)                                               |
| •    | Force Sensors (71 Items)                                                             |
| •    | Gas Sensors (650 Items)                                                              |
|      | Humidity, Moisture Sensors (512 Items)                                               |
|      | Image Sensors, Camera (2,064 Items)                                                  |
|      | IrDA Transceiver Modules (150 Items)                                                 |
|      | LVDT Transducers (Linear Variable Differential Transformer) (147 Items)              |
|      | Magnetic Sensors - Compass, Magnetic Field (Modules) (54 Items)                      |
|      | Magnetic Sensors - Linear, Compass (ICs) (1,115 Items)                               |
|      | Magnetic Sensors - Position, Proximity, Speed (Modules) - Industrial (480 Items)     |
|      | Magnetic Sensors - Position, Proximity, Speed (Modules) (4,889 Items)                |
|      | Magnetic Sensors - Switches (Solid State) (3,345 Items)                              |
|      | Magnets - Multi Purpose (994 Items)<br>Magnets - Sensor Matched (88 Items)           |
|      | Magnets - Sensor Matched (contents)<br>Motion Sensors - Accelerometers (1,559 Items) |
|      | Motion Sensors - Gyroscopes (178 Items)                                              |
|      | Motion Sensors - IMUs (Inertial Measurement Units) (334 Items)                       |
|      | Motion Sensors - Inclinometers (138 Items)                                           |
|      | Motion Sensors - Optical (592 Items)                                                 |
|      | Motion Sensors - Tilt Switches (65 Items)                                            |
|      | Motion Sensors - Vibration (263 Items)                                               |
|      | Multifunction (380 Items)                                                            |
| •    | Optical Sensors - Ambient Light, IR, UV Sensors (1,108 Items)                        |
| •    | Optical Sensors - Distance Measuring (225 Items)                                     |
| •    | Optical Sensors - Photo Detectors - CdS Cells (63 Items)                             |
|      | Optical Sensors - Photo Detectors - Logic Output (136 Items)                         |
|      | Optical Sensors - Photo Detectors - Remote Receiver (1,865 Items)                    |
|      | Optical Sensors - Photodiodes (1,289 Items)                                          |
|      | Optical Sensors - Photoelectric, Industrial (12,089 Items)                           |
|      | Optical Sensors - Photointerrupters - Slot Type - Logic Output (1,191 Items)         |
|      | Optical Sensors - Photointerrupters - Slot Type - Transistor Output (1,329 Items)    |
|      | Optical Sensors - Photonics - Counters, Detectors, SPCM (Single Photon Counting N    |
| •    | Optical Sensors - Phototransistors (884 Items)                                       |
|      |                                                                                      |

#### Counters

Once you have whatever you're measuring converted to TTL levels (0V / 5V), you can write a program to do things, like count.

- Count each riding edge (counter)
- Up / Down Counter
- Multiple Counters
  - Hungry Hungry Hippo



#### **Electronic Components**

#### Example 1: Up Counter

- Start with PORTD = 0
- Each rising edge on RB0, increment the count by one



#### **Counter: Flow Chart & Code**





#### Example 2: Up / Down Counter

- Start with Count = 0
- Look for a rising edge on RB0
- When found
  - Count up if RB1 = 1
  - Count down if RB1 = 0



#### **Up/Down Counter: Flow Chart and Code**





#### **Example 3: Multiple Counters**

- Hungry-Hungry Hippo Game

Input:

• Push buttons RB0 and RB7

Output:

• PORTC and PORTD

Relationship:

- Start with PORTC = PORTD = 0
- Each time you detect a rising edge on RB0, increment PORTC by one
- Each time you detect a rising edge on RB7, increment PORTD by one

Note: Detect a rising edge on RBx when you see a 0-1 transition

- Curret value = 1
- Previous value was 0



#### **Flow Chart & Assembler Code**





#### Summary

PIC uses TTL logic levels

- 0V = logic 0
- 5V = logic 1

With an op-amp, you can convert signals to TTL logic levels

- Comparitor (no hysteresis, can result in chatter)
- Schmitt Trigger

With software, you can then count the number of rising edges

- Up Counter
- Up / Down Counter
- Multiple Counters