Binary Inputs

ECE 376 Embedded Systems

Jake Glower - Lecture \#4
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Binary Inputs: PORTA..E

The PIC18f4620 chip has

- 33 I/O lines
- Split into five ports:
- $0 \mathrm{~V}=\operatorname{logic} 0$
- $5 \mathrm{~V}=\operatorname{logic} 1$

	PORTA	PORTB	PORTC	PORTD	PORTE
Pins	$2 . .7$	$33 . .40$	$15 . .18$, $24 . .26$	$19 . .22$, $27 . .30$	3
Binary Input	5	8	8	8	3
Binary Output	5	8	8	8	3
Analog Input	5	5	-	-	3

Types of Switches

- SP: Single Pole. 2 connectors
- DP: Douple Pole. Two sets of 2 connectors
- ST: Single Throw. Open or closed
- DT: Double Throw. Center lead can connect to two different leads

Reading a SPST Switch

- Convert Open / Closed to 0V / 5V
- R: Limits current when switch is closed
- C: Eliminates bouncing (multiple-reads)
- R2: Dummy protection

$\mathrm{Y}=\mathrm{X}>2.3 \mathrm{~V}$

Design a circuit which outputs

- +5 V when the input is more than 2.3 V
- 0 V when the input is less than 2.3 V

Solution: Use a op-amp (such as the MCP602) in your lab kit

$\mathbf{Y}=$ Temperature > 20C

- $\mathrm{Y}=+5 \mathrm{~V}$ when the temperature is above +20 C
- $\mathrm{Y}=0 \mathrm{~V}$ when the temperature is below +20 C

Solution: Use a Thermistor and a voltage divider

- $\mathrm{R}(20 \mathrm{C})=1250 \mathrm{Ohms}$
- $\mathrm{Vx}(20 \mathrm{C})=2.778 \mathrm{~V}$

I/O Characteristics:

- At $20 \mathrm{C}(2.778 \mathrm{~V})$, the output switches.
- For voltages below 2.778 V ($\mathrm{T}>20 \mathrm{C}$), the output goes to 5 V
- For voltages above $2.778 \mathrm{~V}(\mathrm{~T}<20 \mathrm{C})$, the output goes to 0 V

Input / Output Characteristic of the Comparitor

Comparitors and Noise

Problem with comparitors:

- If the input signal has noise on it, you can get chatter at the 0-1 and 1-0 transistions.
- This chatter can mess up counters, which interprit this as multiple $0-1$ transistions.

Removing Chatter:

- Software: Add a delay
- Hardware: Add hysteresis
- The output switches to +5 V when the temperature goes above +20 C
- The output switches to 0 V when the temperature drops below +15 C

Schmitt Trigger:

As Va increases, Output Decreases

- Connect to the - input

Turn on at +20 C

- $\mathrm{R}=1250.6 \mathrm{Ohms}$
- $\mathrm{Va}=2.7492 \mathrm{~V}$
- Apply 2.7492 V to + input

Turn off at +15 C

- $\mathrm{R}=1576.2 \mathrm{Ohms}$
- $\mathrm{Va}=2.9934 \mathrm{~V}$

Slope $=20.5$

- $\left(\frac{5 V-0 V}{2.9934 V-2.7492 V}\right)=20.5$
- R1 / R2 = 20.5

Schmitt Triggers and Noise

Hysteresis adds two thresholds:

- $\mathrm{Y}=5 \mathrm{~V}$ when $\mathrm{X}<2.7492 \mathrm{~V}$
- $\mathrm{Y}=0 \mathrm{~V}$ when $\mathrm{X}>2.9934 \mathrm{~V}$
- No change when $2.74 \mathrm{~V}<\mathrm{X}<2.99 \mathrm{~V}$

By adding a hysteresis, chatter is avoided

- This prevents multiple counts

Changing Sensors

Change R and you can measure...

- CdS sensors convert light to resistance
- Photovoltaic sensors convert light to voltage (current actually...)
- Gas sensors convert $\mathrm{O} 2, \mathrm{CO} 2$, methane, etc to a resisance or voltage
- Strain gages convert strain (or weight or pressure) to resistance
- Tachometers convert motor speed to a voltage.
$10,000+$ sensors are available from Digikey

Sensors, Transducers - 1,613 New Products

- Accessories (6,216 Items)
- Amplifiers (1,786 Items)
- Camera Modules (514 Items)
- Color Sensors - Industrial (36 Items)
- Color Sensors (80 Items)
- Current Sensors $(2,488$ Items $)$
- Encoders - Industrial (4,535 Items $)$

Encoders (4,470 Items)
Float, Level Sensors - Industrial (195 Items

- Float, Level Sensors (1,067 Items)
- Flow Sensors (445 Items)

Force Sensors (74
Force Sensore (71 Items) (339 Items)

- Gas Sensors (650 ltems
- Humidity, Moisture Sensors (512 Items)
- Image Sensors, Camera (2,064 Items)
- IIDA Transceiver Modules (150 Items)
- LVDT Transducers (Linear Variable Differential Transformer) (147 Items)
- Magnetic Sensors - Compass, Magnetic Field (Modules) (54 Items)
- Magnetic Sensors - Linear, Compass (ICs) $(1,115$ Items)
- Magnetic Sensors - Position, Proximity, Speed (Modules) - Industrial (480 Items)
- Magnetic Sensors - Position, Proximity, Speed (Modules) (4,889 Items)
- Magnetic Sensors - Switches (Solid State) $(3,345$ Items)
- Magnets - Multi Purpose (994 Items)
- Magnets - Sensor Matched (88 Items
- Motion Sensors - Accelerometers (1,559 Items)
- Motion Sensors - Gyroscopes (178 Items)
- Motion Sensors - IMUs (Inertial Measurement Units) (334 Items)
- Motion Sensors - Inclinometers (138 Items)
- Motion Sensors - Optical (592 Items)
- Motion Sensors - Tilt Switches (65 Items)
- Motion Sensors - Vibration (263 Items)

Multifunction (380 Items)
optical Sensors-Ambient Light, IR, UV Sensors (1,108 Items)
Optical Sensors - Distance Measuring (225 Items)
Optical Sensors - Photo Detectors - CdS Cells (63 Items)

- Optical Sensors - Photo Detectors - Logic Output (136 Items)

Optical Sensors - Photo Detectors - Remote Receiver (1,865 Items)

- Optical Sensors - Photodiodes (1,289 Items)

Optical Sensors - Photoelectric, Industrial (12,089 Items)
Optical Sensors - Photinterrupters - Slot Type - Logic Output (1,191 Items)
Optical Sensors - Photointerrupters - Slot Type - Transistor Output (1,329 Items)
Optical Sensors - Photonics - Counters, Detectors, SPCM (Single Photon Counting N

- Optical Sensors - Phototransistors (884 Items)

Counters

Once you have whatever you're measuring converted to TTL levels ($0 \mathrm{~V} / 5 \mathrm{~V}$), you can write a program to do things, like count.

- Count each riding edge (counter)
- Up / Down Counter
- Multiple Counters
- Hungry Hungry Hippo

```
All Products
Top Results: counter
Top Categories
Logic - Counters, Dividers (3,519 Items)
Panel Meters - Counters, Hour Meters ( 1,450 Items)
Clock/Timing - Programmable Timers and Oscillators ( 90 Items)
Controllers - Accessories (1 Items)
Equipment - Specialty (13 Items)
Optomechanical (1 Items)
Industrial Equipment (1 Items)
Evaluation Boards - Expansion Boards, Daughter Cards (6 Items)
PMIC-LED Drivers (1 Items)
Logic - Shift Registers (13 Items)
Optical Sensors - Photonics - Counters, Detectors, SPCM (Single Photon
Panel Meters - Accessories ( 10 Items)
Data Acquisition (DAQ) (149 Items)
Interface - Analog Switches, Multiplexers, Demultiplexers (1 Items)
Embedded - Microcontrollers (1 Items)
```

Electronic Components

Example 1: Up Counter

- Start with PORTD = 0
- Each rising edge on RB0, increment the count by one

Counter: Flow Chart \& Code

\#include <p18f4620.inc>
COUNT equ 0
org 0×800
movlw 0xFF
movwf TRISB
clrf TRISD
movlw 0x0F movwf ADCON1
clrf COUNT
clrf PORTD
; while(RB0 == 1);
L1:
btfsc PORTB,0
goto L1
; while(RBO == 0);
L2:
btfss PORTB,0
goto L2
; Rising edge detected
; PORTD = PORTD + 1;
incf COUNT,F
movff COUNT, PORTD
goto L1
end

Example 2: Up / Down Counter

- Start with Count = 0
- Look for a rising edge on RB0
- When found
- Count up if RB1 = 1
- Count down if RB1 = 0

Up/Down Counter: Flow Chart and Code

\#include <p18f4620.inc>
COUNT equ 0
org 0×800
movlw 0xFF
movwf TRISB
clrf TRISD
movlw 0x0F
movwf ADCON1
clrf COUNT
clrf PORTD
L1:
btfsc PORTB,0
goto L1
L2:
btfss PORTB,0
goto L2
L3:
btfsc PORTB, 1
goto Up
Down:
decf COUNT,F
goto L4
Up:
incf COUNT,F
L4:
movff COUNT, PORTD
goto L1
end

Example 3: Multiple Counters

- Hungry-Hungry Hippo Game

Input:

- Push buttons RB0 and RB7

Output:

- PORTC and PORTD

Relationship:

- Start with PORTC = PORTD = 0
- Each time you detect a rising edge on RB0, increment PORTC by one
- Each time you detect a rising edge on RB7, increment PORTD by one

Note: Detect a rising edge on RBx when you see a $0-1$ transition

- Curret value = 1
- Previous value was 0

Flow Chart \& Assembler Code

\#include <p18f4620.inc>
OldB equ 0
org 0×800
clrf TRISA
movlw 0xFF
movwf TRISB
clrf TRISC
clrf TRISD
clrf TRISE
movlw 0x0F
movwf ADCON1
movff PORTB, B
L1:
movff B, OldB
movff PORTB, B
btfss B, 0
goto L2
btfsc OldB, 0
goto L2
incf PORTD, F
L2:
btfss B,7
goto L3
btfsc OldB, 7
goto L3
incf PORTC, F
L3:
goto L1
end

Summary

PIC uses TTL logic levels

- $0 \mathrm{~V}=\operatorname{logic} 0$
- $5 \mathrm{~V}=\operatorname{logic} 1$

With an op-amp, you can convert signals to TTL logic levels

- Comparitor (no hysteresis, can result in chatter)
- Schmitt Trigger

With software, you can then count the number of rising edges

- Up Counter
- Up / Down Counter
- Multiple Counters

