
Binary Outputs and Timing
ECE 376 Embedded Systems

Jake Glower - Lecture #5
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Binary Outputs and Timing

Each I/O pin can be input or

output

Input:

- High Impedance

- 0V reads logic 0

- 5V reads logic 1

Output:

- Logic 0 = 0V

- Logic 1 = 5V

- Capable of up to 25mA

Note: Make sure default is decimal

Timing will be off for these programs otherwise

Project - Build Options - Project MPASM: Decimal

Timing in Assembler

Each line of assembler takes 1 clock (100ns)

By counting instructions, you can set the timing of a program

With what we know now, you can

Keep track of time in seconds, or

Output a precise frequency

Later on, you can do more than one thing at a time

That requires the use of interrupts (a future topic)

Timing in Seconds: Binary Clock
A clock that only engineers can read

Binary Coded Decimal

(BCD)

PORTD

Seconds x 1 bits 0..3

Seconds x 10 bits 4..7

PORTC

Minutes x 1 bits 0..3

Minutes x 10 bits 4..7

PORTB

Hours x 1 bits 0..3

Hours x 10 bits 4..7

Step 1: Get it to count

Only engineers get excited when a light blinks

Your code compiled

Your code downloaded

Your code is running

#include <p18f4620.inc>

; Start of code:

 org 0x800

 clrf TRISD

 clrf PORTD

 movlw 0x0F

 movwf ADCON1

Loop:

 incf PORTD,F

 goto Loop

 end

Step 2: Get it to count once per second

1 second = 10,000,000 clocks

Actual # clocks = 10,050,504 (1.0050504 seconds)
Wait: N = 4

movlw 100

movwf CNT2

Loop2: N = 5 * 100

 movlw 100

 movwf CNT1

Loop1: N = 5 * 100 * 100

 movlw 200

 movwf CNT0

Loop0: N = 5 * 200 * 100 * 100

 nop

 nop

 decfsz CNT0,F

 goto Loop0

 decfsz CNT1,F

 goto Loop1

 decfsz CNT2

 goto Loop2

 return

Step 3: Get it to count in BCD

1st Nibble:

PORTD bits 0..3

Count 0..9 & repeat

2nd Nibble:

PORTD bits 4..7

Increment when 1st nibble get to ten

SEC equ 0

; Start of code:

 org 0x800

 clrf TRISD

 clrf SEC

 movlw 0x0F

 movwf ADCON1

Loop:

 incf SEC,F

 movf SEC,W

 andlw 0x0F

 movwf TEMP

 movlw 10

 cpfseq TEMP

 goto L2

 movlw 6

 addwf SEC,F

L2:

 movff SEC, PORTD

 call Wait

 goto Loop

 end

Step 4: Get the minutes to count

Doesn't have to be in real time

Speed up the Wait loop for test purposes

When SEC = 60

SEC goes back to zero

Increment MIN

Loop:

 incf SEC,F

 movf SEC,W

 andlw 0x0F

 movwf TEMP

 movlw 10

 cpfseq TEMP

 goto L2

 movlw 6

 addwf SEC,F

L2:

 movf 0x60

 cpfseq SEC

 goto L3

 clrf SEC

 incf MIN,F

L3:

 movff SEC, PORTD

 movff MIN, PORTC

 call Wait

 goto Loop

Timing in Seconds:
Hungry-Hungry Hippo (take 2)

Count button presses on

RB0 (player 1)

RB7 (player 2)

Same as before

Start the game when RB0 = 1

Something new

Stop counting after 10 seconds

Something New

Concept for Timing

The previous Hungry Hungry Hippo code has 13 lines of

assembler

Takes 14 clocks (1.4us) to execute

Add a 10ms wait loop at the end

14 clocks for the hungry hungry hippo code

100,000 clocks for the wait loop

10 seconds is 1000 loops (approximately)

Start

Initialize I/O

Wait for RB0

Time = 10000

Play Hippo Game

Decrement Time

Wait 10ms

Time = 0?

End

yes

no

Assembler Coding
Top-Down Programming

org 0x800

call Initialize

call WaitForRB0

movlw 0x03

movwf TIMEH

movlw 0xE8

movwf TIMEL

Loop:

call Hippo

call DecrementTime

call Wait10ms

movlw 0

cpfseq TIMEH

goto Loop

cpfseq TIMEL

goto Loop

End:

goto End

Start

Initialize I/O

Wait for RB0

Time = 10000

Play Hippo Game

Decrement Time

Wait 10ms

Time = 0?

End

yes

no

Playing Notes witha PIC

Hardware

Connect an 8-Ohm speaker to your PIC board.

Option #1: Add 200 Ohms in series to limit the current

max(I) = 25mA

R total >
5V

25mA
= 200Ω

Option #2: Use an H-bridge (in your lab kit)

Up to 46VDC, and

Up to 3A (max), 2A (continuous)

Requires a 3W speaker if using 5V

RC0(IN4) RC1(IN3) Vab

0 0 0V

0 1 -3.27V

1 0 +3.27V

1 1 0V

PIC

RC0

gnd

> 192 Ohms

8 Ohms

+5V0V+5V

RC0

RC1

PIC Board

5W Speaker

Dual H-Bridge

A

B

1 2 3 4

C

D

Software and Timing:

Count on PORTC really really fast

Main loop takes 3 clocks

300ns / toggle

1.67MHz

 #include <p18f4620.inc>

; Start of code:

 org 0x800

 clrf TRISC

 clrf PORTC

 movlw 0x0F

 movwf ADCON1

Loop:

 incf PORTD,F

 goto Loop

 end

Play 261Hz on RC0

Clocks = = 19,157 = N2 + N1 + N0
10,000,000

2xHz

Wait: N2 = 4

movlw 19

movwf CNT1

Loop1: N1 = 5*19

 movlw 100

 movwf CNT0

Loop0: N0 = 10 * 100 * 19

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 decfsz CNT0,F

 goto Loop0

 decfsz CNT1,F

 goto Loop1

 return

Ideally, there should be 19,157 clocks between each time you toggle RC0.

Start

PORTC = Output

Toggle RC0

Wait

Clocks = (10*100 + 5) * 19 + 5

 = 19,100 (0.29% low)

One Key Piano
; Play 261 Hz on RC0

#include <p18f4620.inc>

; Variables

CNT0 EQU 1

CNT1 EQU 2

; Program

org 0x800

call Init

Loop:

btfsc PORTB,0

 call Toggle

call Wait

goto Loop

(same as before)

4-Key Piano:
RB0: 261 Hz (C4)

RB1: 293 Hz (D4)

RB2: 329 Hz (E4)

RB3: 349 Hz (F4)

Use four wait loops: one for each note

Clocks =
10,000,000

2 x Hz

The clocks for each wait loop are then:

Hz 261 293 329 349

Clocks (ideal) 19,157.09 17,064.85 15,197.57 14,326.65

A 239 243 253 239

B 8 7 6 6

Clocks (actual) 19,165 17,050 15,215 14,375

Software
org 0x800

call Init

Loop:

movf PORTB,W

btfss STATUS,Z

call Toggle

btfsc PORTB,0

call Wait_C4

btfsc PORTB,1

call Wait_D4

btfsc PORTB,2

call Wait_E4

btfsc PORTB,3

call Wait_F4

goto Loop

Start

Initialize
Ports

Any

Button
no

yes

toggle RC0

Button?
RB0 RB1 RB2 RB3

Wait (C4) Wait (D4) Wait (E4) Wait (F4)

D4 (293Hz)

Wait_D4: ; Wait 17,064

clocks

movlw 7

movwf CNT1

Loop1:

movlw 243

movwf CNT0

Loop0:

nop

nop

nop

nop

nop

nop

nop

nop

decfsz CNT0,F

goto Loop0

decfsz CNT1,F

goto Loop1

 return

F4 (349Hz)
Wait_F4: ; Wait 14,326 clocks

movlw 6

movwf CNT1

Loop1:

movlw 239

movwf CNT0

Loop0:

nop

nop

nop

nop

nop

nop

nop

nop

decfsz CNT0,F

goto Loop0

decfsz CNT1,F

goto Loop1

 return

Result: 4-Key Piano
Hz 261 293 329 349

Hz (actual) 260.89 293.26 328.62 347.83

Error (%) -0.04 0.09 -0.12 -0.34

Note:

With assembler, you know precisely how long a program takes to execute

If you add a couple NOP statements, you can get the timing accurate to 100ns (one clock)

Summary

Each line of assembler takes one clock

100ns

By counting the number of instructions, you can precisely set the time it takes a

program to execute

This allows you to

Set the executing time in seconds, or

Output a precise frequency

With what we know now, you can only do one thing

Only one program is running

