Binary Outputs: LEDs

ECE 376 Embedded Systems
 Jake Glower - Lecture \#6

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Binary Outputs: LEDs

Light Emitting Diodes (LED's)

- Are diodes, allowing current to only flow in one direction,
- They convert current to light.(light is proportional to current flow), and
- They are very fast, capable of $>100 \mathrm{MHz}$ flashes per second, and
- They are a simple way to output binary data (light on / light off)

LED VI Characteristics

Exponential in nature

- Makes analysis hard

Ideal Diode

- Vd = constant when Id >0
- Slightly wrong but often times close enough

Diode Specifications

- Vf: Vd when Id > 0
- Ideal diode approximation
- mcd: Light output in millicandles
- One beeswax candle = 1000 mcd
- lux: Light output in lux
- 100W light bulb = 1000 lux
- Color: Nonscientific term
- Wavelength: More accurate color

LED	Color	Current	Typical Vf	Typical mcd	Wavelength (nm)	Price ea
1W White Star LED		350 mA	3.4 V	100 Im	n / a	$\$ 1.55$
0.5 W 10mm White LED		100 mA	3.3 V	25 lm	n / a	$\$ 0.30$
Piranah RGB LED	Red	20 mA	1.8 V	8000 mcd	630 nm	$\$ 0.31$
	Green	20 mA	3.0 V	8000 mcd	525 nm	
	Blue	20 mA	3.0 V	8000 mcd	470 nm	

Diode Circuits

Case 1: Connect with a resistor

- $\mathrm{Vf}<5 \mathrm{~V}$
- Id $<25 \mathrm{~mA}$

Case 2: Connect with a transistor

Case 2: Id > 25 mA

Case 1: Vd < 5V, Id < 25mA

Connect a red LED to a PIC. Set light level to 5000 mcd

- Vf = 1.8V @ 20mA, 8,000mcd @ 20mA

Solution: Light is proportional to
current

$$
\begin{aligned}
& I_{d}=\left(\frac{5000 \mathrm{mcd}}{8000 \mathrm{mcd}}\right) \cdot 20 \mathrm{~mA}=12.5 \mathrm{~mA} \\
& R_{r}=\left(\frac{5 V-1.8 \mathrm{~V}}{12.5 \mathrm{~mA}}\right)=256 \Omega
\end{aligned}
$$

Case 2: Id > 25mA

Option \#1: Use a solid state relay (\$7 solution from www.mpja.com)

- Input: 3-32V DC @ < 10mA
- Output: 5-60VDC @ 10A max

Also available for up to $480 \mathrm{VAC}, 40 \mathrm{~A}$
10A DC Solid State Relay. DC Control Input

Stock No: 33980 RL
cirxiry
Be the first to review this item
\$6.95

Availibilty: In Stock Units: 32
Quantity 1
ADD TO CART

Add To Wish List

Case 2: Id > 25mA

Option \#2: BJT Transistor (\$0.53 solution)

- NPN semiconductor
- Base current can turn on / off the current
- \quad Saturated (on) when $\beta I_{b}>I_{c}$

NPN Transistor: The base current controls the current from collector to emitter

Transistor Model

- Between the base and the emitter is a diode. It takes 0.7 V to turn on a Silicon diode.
- Between the collector and the emitter is a current-controlled current source. The current flow amplifies the base to emitter current.

Symbol and Circuit Model for an NPN Transistor: The arrow indicates a diode from base to emitter.

Transistor Specifications

	3904	6144	TIP112
Type	NPN	NPN	NPN
Current Gain	100	200	1,000
max(Ic)	200 mA	10 A	4 A
max(Vce)	40 V	50 V	40 V
Vce(sat)	300 mV	360 mV	900 mV
Vbe	0.7 V	0.7 V	1.4 V
price	$\$ 0.037$	$\$ 0.53$	$\$ 0.59$
Image			

Using a Transistor as a Switch

- Turn on and off a 1W White LED @ 100mA
- Vf=3.0V @ 350mA
- Use a 6144 NPN transistor

Pick Ic to set the current

$$
R_{c}=\left(\frac{10 \mathrm{~V}-3.0 \mathrm{~V}-0.36 \mathrm{~V}}{100 \mathrm{~mA}}\right)=66.4 \Omega
$$

Pick Ib so that $\beta I_{b}>I_{c}$

$$
I_{b}>\frac{I_{c}}{\beta}=\frac{100 \mathrm{~mA}}{200}=0.5 \mathrm{~mA}
$$

Let $\mathrm{Ib}=2 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{2 m A}\right)=2150 \Omega
$$

note: Rb is somewhat arbitrary

- $R_{b}>\left(\frac{5 V-0.7 \mathrm{~V}}{25 m A}\right)=172 \Omega$
- $R_{b}<\left(\frac{5 V-0.7 V}{0.5 m A}\right)=8600 \Omega$

Fun with RGB LEDs

- You can make any color by mixing red + green + blue
- Prianah LED's combine three colors in one LED
- Single pixel in a scoreboard

Piranah Package

Connection to a PIC

LED Flashlight

Build an LED flashlight with the following functions:

- RB0
- RB1
- RB2 Green light on
- RB3 Blue light on

Define "on" to be 20 mA .

Hardware Solution: Previous figure with

$$
\begin{aligned}
& R_{r}=\left(\frac{5 V-1.8 V}{20 m A}\right)=160 \Omega \\
& R_{g}=\left(\frac{5 V-3.0 V}{20 m A}\right)=100 \Omega \\
& R_{b}=\left(\frac{5 V-3.0 \mathrm{~V}}{20 \mathrm{~mA}}\right)=100 \Omega
\end{aligned}
$$

Option 1: Lights on while button is pressed

- No Buttons: LEDs off
- RB0:

Turn on Red

- RB1: Turn on Green
- RB2: Turn on Blue

Code:

```
Init:
```

```
movlw 0xFF
movwf TRISB
clrf TRISC
movlw 0x0F
movwf ADCON1
movff PORTB, PORTC
goto Loop
end
```

Loop:
note: Code is a lot more complicated if the hardware shuffles the pins to the LED

Option 2: Lights Remain On

```
COLOR equ 0
#include <p18f4620.inc>
    org 0x800
    call Init
Loop:
    movf COLOR,W
    btfsc PORTB,0
    movlw 0
    btfsc PORTB,1
    movlw 1
    btfsc PORTB,2
    movlw 2
    btfsc PORTB,3
    movlw 4
    movwf COLOR
    movff COLOR, PORTC
    call Wait
    goto Loop
```


Option 3: Change the brightness to 1600mcd (20\%)

- Hardware: Change R
- Software: Make the duty cycle 20%

Loop:

```
clrf PORTC
call Wait
call Wait
call Wait
movf COLOR,W
btfsc PORTB,0
movlw 0
btfsc PORTB,1
movlw 1
btfsc PORTB,2
movlw 2
btfsc PORTB,3
movlw 4
movwf COLOR
movff COLOR, PORTC
call Wait
goto Loop
```


Pulse Width Modulation

- Changing the duty cycle allows you to adjust how bright the LEDs are via software
- 5\% (PORTB), 20% (PORTC), 90% (PORTD)

Summary: LEDs

LEDs are

- Easy to connect to a PIC board
- Easy to turn on and off
- Very fast
- > 100 MHz very common
- Must faster than a PIC

Hardware:

- If you need less than 5 V and 25 mA , use a resistor to connect an LED to the PIC board
- If you need more than 5 V or more than 25 mA , use a transistor

Software:

- Logic $0(0 \mathrm{~V})$ turns off the LED
- Logic 1 (5V) turns on the LED
- PWM allows you to vary the brightness from 0% to 100% in software
- note: you can change this in hardware if you want

