
NeoPixel LED's
(www.AdaFruit.com)

ECE 376 Embedded Systems

Jake Glower - Lecture #7
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

NeoPixel LED's
www.AdaFruit.com

search WS2812 LED on ebay

Bright, pretty, easy to use

Useful for senior design

Clothing (fashion)

Desk lights

Christmas lights

etc.

RGB LED's with 1-wire interface

1st LED: 1st 24 bits of data

2nd LED: 2nd 24 bits of data

3rd LED: 3rd 24 bits of data

etc.

Data In:
24-bits of data (G / R / B)

Each bit is 1.2us long (+/- 150ns)

Logic 1 is on for 0.7us (+/- 150ns)

Logic 0 is on for 0.3us (+/- 150us)

50us pause = end of message

Green (byte 1) Red (byte 2) Blue (byte 3)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Logic 0 Logic 0Logic 1 End of Message

0.3us0.7us0.3us

1.2us1.2us 1.2us > 50us

Assembler Coding - Bottom Up Programming
Start with the simplest (lowest) level, like output a bit. Test this routine to make sure it

works.

Once you can output 1 bit, output a byte (8 bits). Test this routine.

Next, output 3 bytes (green / red / blue). Test this routine.

Next, output 64 values for GRB to drive the display.

This is called 'bottom-up programming.'

It is a methodical method to write programs

It will get you a working design.

It also saves a LOT of time.

Level 1: Send a bit

Logic 0 or Logic 1

Data in bit 7 of PIXEL

; Global Variables

PIXEL EQU xxxx ; 0 is 0mA, 255 is 20mA

Pixel_1 ; clocks

bsf PORTD,0 ; 0 bit set

nop ; 1

btfss PIXEL,7 ; 2

bcf PORTD,0 ; 3 clear at 0.3us for a 0

nop ; 4

nop ; 5

rlncf PIXEL,F ; 6

bcf PORTD,0 ; 7 clear at 0.7us for a 1

return ; 8

; 9 (2 clocks for a goto)

call Pixel_1 ; 10 (part of the next routine)

; 11 (2 clocks for a goto)

Level 1: Send a Bit

Testing

Loop bcf PIXEL,7

call Pixel_1

bsf PIXEL,7

call Pixel_1

movlw 100

call Wait

goto Loop

Level 2: Send a byte

Pass data in PIXEL

Pixel_8

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

call Pixel_1

return

Level 2: Send a Byte

Testing: Send 0000 1111:
Loop:

movlw 0x0F

movwf PIXEL

call Pixel_8

movlw 10

call Wait_ms

goto Loop

Level 3: Send a GRB Pattern

PixelGRB:

movff GREEN, PIXEL

call Pixel_8

movff RED, PIXEL

call Pixel_8

movff BLUE, PIXEL

call Pixel_8

return

and just for fun, a routine which turns off a pixel (outputs 00 00 00)

PixelOff:

clrf PIXEL

call Pixel_8

clrf PIXEL

call Pixel_8

clrf PIXEL

call Pixel_8

return

Testing: Make the first three lights Green, Red, Blue:

Loop:

movlw 250

movwf GREEN

clrf RED

clrf BLUE

call PixelRGB

movlw 250

movwf RED

clrf BLUE

clrf GREEN

call PixelRGB

movlw 250

movwf BLUE

clrf GREEN

clrf RED

call PixelRGB

movlw 100

call Wait_ms

goto Loop

Program 1: Output a rainbow
movlw 0

movwf RED

movlw 50

movwf GREEN

movlw 150

movwf BLUE

call PixelRGB

Pixel 0 1 2 3 4 5 6 7 8 9 10 11

Red 200 150 100 50 0 0 0 0 0 50 100 150

Green 0 50 100 150 200 150 100 50 0 0 0 0

Blue 0 0 0 0 0 50 100 150 200 150 100 50

color red orange yellow green cyan blue purple pink

Program 2: Go through the color wheel

Count to 750 (250 three times)

Increase / Decrease GREEN / RED / BLUE each pass

0 250 500 750 Loop Count

Partial Code:

 movlw 250

 movwf BLUE

 clrf RED

 clrf GREEN

Loop3:

call PixelRGB

movlw 10

call Wait_ms

incf GREEN,F

decfsz BLUE,F

goto Loop3

goto Loop1

Comments on NeoPixels

NeoPixels allow you to access a large number of RGB LEDs

using a single wire

Cascade as many NeoPixels as you want

The 1st RGB pattern drives the 1st NeoPixel

The 2nd RGB patter drives the 2nd NeoPixel

etc

Timing is critical

Each bit is 1.2us (12 clocks)

0.3us is logic 0 (3 clocks)

0.7us is logic 1 (7 clocks)

50us idle signifies end of message

You are almost forced to use assembler to drive NeoPixels

gnd

gnd

gnd

gnd

Vcc

Vcc

Vcc

Vcc

DIN

DIN

DOUT

DOUT

