
MPLAB8 and C Programming:
ECE 376 Embedded Systems

Jake Glower - Lecture #8
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

MPLAB8 and C Programming:
For step-by-step instructions on how to compile and download a program using MPLAB8

and PICC18, please refer page 3.

If you're not familiar with C or forgot most of what you learned in ECE 173, don't worry.

We'll start with fairly simple C programs and build from there.

If you want to get an A or B in this course, please do the homework and test it on your

PIC board. Writing programs on paper (or copying someone else's code) isn't the same as

trying to get it to work in practice. Besides, this course is a lot more fun if you can see

your devices actually working.

Machine Code

Pre 1950, computers were programmed in machine

code.

Very cryptic

Hard to understand

Hard to debug

Example: Stepper Motor Driver

Machine Code (.hex file)

Assembler
Much superior to machine code

Semi-meaningful names represent the valid

machine operations

Fast, efficient

Problems:

Limited instruction set

Still very cryptic, hard to debug, hard to

maintain

Example: Stepper Motor Controller

C Language

Adds

multiply, divide,

arrays

for next, do while loops

if statements

Far easier to write code which is

Understandable

Testable

Reusable

Procedure for Compiling a C Program

Step 1: Create a directory (if needed)

Step 2: Start MPLAB.

Go to the program wizard

Select your device: PIC18F4620

Select the Hi-Tech C Universal Toolsuite.

This tells the compiler to interprit your code as C

code.

Change the path to your thumb-drive for where the files are located

Select the C program you want to compile

View Project

* important * Offset your code by 0x800

Your code needs to start at 0x800 - after the

boot-loader.

Go to Project - Build Options - Project

Under Linker, offset the code by 0x800

note: If your code worked yesterday and

doesn't work today, it's probably you

forgot to offset your code by 0x800

Compile y our code just like you did in assembler

Project Build All (or F10)

You should get the following message
Memory Summary:

Program space used 76h (118) of 10000h bytes (0.2%)

Data space used 3h (3) of F80h bytes (0.1%)

EEPROM space used 0h (0) of 400h bytes (0.0%)

ID Location space used 0h (0) of 8h nibbles (0.0%)

Configuration bits used 0h (0) of 7h words (0.0%)

This tells you your code compiled and uses up 118 bytes (out of 64k), 3 bytes of

RAM (out of 4k), etc.

This also creates some files

Clock.lst

This shows how your C code converts to assembler. A section looks like the

following

Clock.hex

This is the machine code you download to your processor
:04000000C7EF7FF0D7

:10FF8E00000E926E000E936E000E946E000E956E25

:10FF9E00000E966E0001FF6F0F0EC16E0001FF5135

:10FFAE00000E806E000E816E000E826E000E836E4D

:10FFBE00000E846E000E00010001FD6F000E0001A8

:10FFCE00FE6F010E00010001FD2500010001FD6F15

:10FFDE00000E00010001FE210001FE6FFDC083FF37

:10FFEE00836601D001D002D08228826EEAD700EF5C

:02FFFE0000F011
:00000001FF

Note that the reason we like C so much is

It compiles to assembler fairly directly

Meaning it is efficient, and

C has things like multiply, divide, loops, arrays.

Forgot C?

If you don't remember C that much, don't worry

We don't use many of the features of C

Main things we use are...

if

if, elseif

do

while

subroutines

C Language Summary

Character Definitions:
Name bits range

char 8 -128 to +127

unsigned char 8 0 to 255

int 16 -32,768 to +32,767
unsigned int 16 0 to 65,535

long 32 -2,147,583,648 to +2,147,483,647

unsigned long 32 0 to 4,294,967,295

float 32 3.4e-38 to 3.4e38

double 64 1.7e-308 to 1.7e+308

long double 80 3.4e-4932 to 3.4e+4932

Arithmetic Operations
Name Example Operation

+ 1 + 2 = 3 addition

- 3 - 2 = 1 subtraction

* 2 * 3 = 6 multiplication

/ 6 / 3 = 2 division

% 5 % 2 = 1 modulus

++ A++ use then increment

++A increment then use

-- A-- use then decrement
--A decrement then use

& 14 & 7 = 6 logical AND

| 14 | 7 = 15 logical OR

^ 14 ^ 7 = 9 logical XOR

>> 14 >> 2 = 3 shift right. Shift in zeros from left.

<< 14 << 2 = 56 shift left. Shift zeros in from right.

Defining Variables:
int A; A is an integer

int A = 3; A in an integer initialized to 3.

int A, B, C; A, B, and C are integers

int A=B=C=1; A, B, and C are integers, each initialized to 1.

int A[5] = {1,2,3,4,5}; A is an array initialized to 1..5

Arrays:
int R[52]; Save space for 52 integers

int T[2][52]; Save space for two arrays of 52 integers.

note:

The PIC18F4626 only has 3692 bytes of RAM, so don't get carried away with arrays.

Conditional Expressions:
! not. !PORTB means the compliment of PORTB.

= assignment

== test if equal.

> greater than

< less than

>= greater than or equal

!= not equal

IF Statement
if (condition expression)

{ statement or group of statements
 }

if (RB0==1) {

 PORTC += 1;

 }

If ... else ...
if (condition expression)

{ statement or group of statements

 }

else {

 alternate statement or group of statements

 }

if (RB0==1) {

 PORTC += 1;
 }

else {

 PORTC -= 1;

 }

WHILE LOOP
while (condition is true) {

 statement or group of statements

 }

DO LOOP
do {

 statement or group of statements

 } while (condition is true);

FOR-NEXT
for (starting value; do while true; changes) {

 statement or group of statements

 }

Infinite Loop
while(1) {

 statement or group of statements

 }

Subroutines in C:

To define a subroutine, you need to

Declare how this subroutine is called (typically in a .h file)

Declare what the subroutine is.

// Subroutine Declarations

int Square(int Data);

// Subroutines

int Square(int Data) {

 int Result;

 Result = Data * Data;

 return(Result);

 }

Standard C Code Structure
//----------------------------------

// Program Name

//
// Author

// Date

// Description

// Revision History

//---------------------------------

// Global Variables

// Subroutine Declarations

#include <pic18.h> // where PORTB etc. is defined

// Subroutines

// Main Routine

void main(void)

{

 }

C vs Assembler
C compiles into assembler very efficiently

Claim: 80% efficient

Actually: C code is 3-10x larger & slower than assembler

Send {1, 2, 3, 4} to PORTA..D

Assembler: 16 instructions C: 29 assembler instructions

 org 0x800

 clrf TRISA

 clrf TRISB

 clrf TRISC

 clrf TRISD

 clrf TRISE

 movlw 0x0F

 movwf ADCON1

 movlw 1

 movwf PORTA

 movlw 2
 movwf PORTB

 movlw 3

 movwf PORTC

 movlw 4

 movwf PORTD

Loop:

 goto Loop

// Subroutine Declarations
#include <pic18.h>

// Main Routine

void main(void)

{

 TRISA = 0;

 TRISB = 0;

 TRISC = 0;

 TRISD = 0;

 TRISE = 0;
 ADCON1 = 0x0F;

 PORTA = 1;

 PORTB = 2;

 PORTC = 3;

 PORTD = 4;

 while(1);

 }

Compilation Results:

Each instruction takes 16 bits (2 bytes / instruction

16 instructions when written in assembler

58 bytes = 29 instructions when written in C

1.81 x larger

Memory Summary:

 Program space used 3Ah (58) of 10000h bytes (0.1%)

 Data space used 1h (1) of F80h bytes (0.0%)

 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)

 Configuration bits used 0h (0) of 7h words (0.0%)

Example 2: 32-Bit Counter
Assembler: 15 instructions C: 67 assembler instructions

 org 0x800

 clrf TRISA

 clrf TRISB

 clrf TRISC

 clrf TRISD

 clrf TRISE

 movlw 0x0F
 movwf ADCON1

Loop:

 incfsz PORTD,F

 goto Loop

 incfsz PORTC,F

 goto Loop

 incfsz PORTB,F

 goto Loop

 incfsz PORTA,F

 goto Loop

#include <pic18.h>

void main(void)

{

 unsigned long int X;

 TRISA = 0;

 TRISB = 0;
 TRISC = 0;

 TRISD = 0;

 TRISE = 0;

 ADCON1 = 0x0F;

 X = 0;

 while(1) {

 X = X + 1;

 PORTD = X;

 PORTC = X >> 8;

 PORTB = X >> 16;
 PORTA = X >> 32;

 }

 }

Compilation results are:

Memory Summary:

 Program space used 86h (134) of 10000h bytes (0.2%)

 Data space used 5h (5) of F80h bytes (0.1%)

 EEPROM space used 0h (0) of 400h bytes (0.0%)

 ID Location space used 0h (0) of 8h nibbles (0.0%)

 Configuration bits used 0h (0) of 7h words (0.0%)

The code compiles into 67 lines of assembler (134/2).

In-Line Assembler:
Almost all C compilers allow you to include assembler code

Makes it easy on the compiler: it doesn't have to do anything

Normally you don't want to do this:

assembler is much harder to understand and debug

assembler is much harder to maintain

Single Instruction Multiple Instructions

asm(" nop"); #asm

 nop

 nop

 nop

#endasm

How Long does C Code Take to Execute?

Assembler is easy to determine execution time

Count number of instructions

Each instruction is one clock (2 for jumps)

C-code is hard to determine

Each line of C compiles into 1 or more lines of

assembler

Different C compilers result in different answers

Option 1:

Look at the .lst file and count number of assembler

instructions

Option 2:

Toggle a pin and determine the time experimentally

Execution Time: Counting Mod 64

C-Code
unsigned char i

while(1) {

 i = (i + 1)% 64;

 if(i == 0) PORTC += 1;
 }

Measure the freuqncy on RC0

f = 4890.0Hz

N64 =



10,000,000

2⋅4890

 = 1022.49

N1 =
1022.49

64
= 15.98 ≈ 16

It takes 16 clocks to count mod 64

Execution Time: Counting Mod 63

C-Code

unsigned char i

while(1) {

 i = (i + 1)% 63;
 if(i == 0) PORTC += 1;

 }

Measure the frequency on RC0:

f = 140.6 Hz

N63 =



10,000,000

2⋅140.6

 = 35, 561.88

N1 =



35,561.88

63

 = 564.47

It takes 564 (ish) clocks to count mod 63

Execution Time: Integer Multiply

C-Code
unsigned int A, B, C;

unsigned char i;

 A = 1234;

 B = 5678;
 while(1) {

 i = (i + 1)% 64;

 if(i == 0) PORTC += 1;

 C = A*B;

 }

Measure the frequency on RC0:

f = 192,2Hz

N64 =



10,000,000

2⋅192.2

 = 26, 014.57

N1 =



26.014.57

64

 = 406.48

16 clocks to count mod 64 plus 390 clocks to do an integer multiply

It takes 390 (ish) clocks to do an integer multiply

Execution Time: Floating Point Multiply

C-Code:
float A, B;

A = 1.00001;

B = 0.02;

while(1) {

 i = (i + 1)% 64;

 if(i == 0) PORTC += 1;

 B = B * A;

 }

RC0 = 66.1Hz

N64 =



10,000,000

2⋅66.1

 = 75, 642.97

N1 =



75,642.97

64

 = 1181.92

Each loop takes about 1182 clocks.

16 clocks to count mod 64 plus 1166 clocks to do a floating point multiply

It takes 1166 clocks to do a floating point multiply

Summary:

C code is a lot easier to write than assembler

C code is a lot easier to understand than assembler

Sometimes, it's easiest to use experimental methods to determine something

Example: Execution Time

Toggle a pin each time you go through your main routine

Tie the pin to a speaker

Measure the frequency of the resulting square wave

Set a pin prior to a funciton call, clear it when you return

Measure the pulse width with an oscilloscope

The pulse-width is the execution time

Variable Names (#include PIC18.h)
Address Register

Name
Bit

7 6 5 4 3 2 1 0

0xF80 PORTA - - RA5 RA4 RA3 RA2 RA1 RA0

0xF81 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

0xF82 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0

0xF83 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

0xF84 PORTE - - - - RE3 RE2 RE1 RE0

0xF85 LATA - - LATA5 LATA4 LATA3 LATA2 LATA1 LATA0

0xF86 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0

0xF87 LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0

0xF88 LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0

0xF89 LATE - - - - LATE3 LATE2 LATE1 LATE0

0xF92 TRISA - - TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0

0xF93 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0

0xF94 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0

0xF95 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0

0xF96 TRISE - - - - TRISE3 TRISE2 TRISE1 TRISE0

