
LCDs in C
ECE 376 Embedded Systems

Jake Glower - Lecture #9
Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

LCDs in C

LEDs

Output binary data (on/off)
Fast
Hard to convey info

Graphic LCD

Control over each pixel
More versitile
Requires more coding

Character LCD

On-board computer translates characters to graphics
Easier to display info
Slower

LCD I/O
Pretty much standard for all LCD displays

Pin Description

Ground, +5 Power for the LCD.
Note: connecting these backwards will destroy the LCD.

Contrast: 0 to 5V signal for the 'brightness' of the display.

RS Register Select.
1 = an instruction (such as blink the cursor)

0 = data (such as display 'A')

RW Read / Write
0 = write to the LCD

1 = read data from the LCD

E Clock. Data or instructions are read in when E is pulsed.

Data 0:7 in 8-bit mode, each byte is read in 8-bits at a time

Data 4:7 in 4-bit mode, each byte is read in two nibbles: left nibble
first (MSB), right nibble last (LSB)

Backlight: 0 to 5V (sometimes 12V) to turn on the backlight (if
available)

Backlight

Data (4-bit)

Data (8-bit)

gnd

Contrast

+5

1 2 3 4 5 6 7 8 9 1011 121314 15 16

RS
RW

E

MSBLSB

Row 1

Row 2

Row 3

Row 4

LCD Instrucion Set:

Instruction RS R/W Data
msb lsb

Description

Clear Display 0 0 0000 0001 Clears display and returns cursor to home position (address 0).
Execution time: 1.64ms

Home Cursor 0 0 0000 001x Returns cursor to home position, returns a shifted display to original
position. Display data RAM (DD RAM) is unaffected. Execution time:

40us to 1.64ms

Entry Mode Set 0 0 0000 01is Sets cursor move direction and specifies whether or not to shift display.
Execution time: 40us

On / Off Control 0 0 0000 1dcb Turn display on or off, turn cursor on or off, blink character at cursor on
or off. Execution time: 40us

Cursor Shift 0 0 0001 srxx Move cursor or scroll display without changing display data RAM.
Execution time: 40us

Function Set 0 0 001d nfxx Set interface data length, mode, font.

Write Data to
CD or DD RAM

1 0 dddd dddd Data is written to current cursor position and (DD/CG) RAM address

Initialization: 4-Bit Mode
Step RS R/W D7:D4 then wait... Comment

15ms Power On

1 0 0 0011 4.1 ms

2 0 0 0011 100us

3 0 0 0011 4.1ms

4 0 0 0010 40us 4-bit mode

5 0 0 0010

6 0 0 1Fxx 40us F = font. 1 = 5x11, 0 for 5x8

7 0 0 0000

8 0 0 1000 40us Display off, cursor off, blink off

9 0 0 0000

10 0 0 0001 1.6ms Clear screen, cursor home

11 0 0 0000

12 0 0 0110 40us Increment cursor to the right when writing. Don't shift the
screen.

Initialization Complete

Place an 'AB' at location (2,6) (address 0x96)

Address = Row + Column

Row Address of Col #0
(16xN LCD)

Address of Col #0
(20xN LCD)

0 0x80 0x80

1 0xC0 0xC0

2 0x90 0x94

3 0xD0 0xD4

Procedure:

Step RS R/W D7:D4 then wait... Comment

1 0 0 9

2 0 0 6 40us Move the cursor to row 2 column 6

3 1 0 4

4 1 0 1 40us Write 'A' (ascii 65 or 0x41) to the current
position. Move one column to the right.

5 1 0 4

6 1 0 2 40us Write 'B' (ascii 66 of 0x42) to the current
position. Move one column to the right.

Backlight

Data (4-bit)

Data (8-bit)

gnd

Contrast

+5

1 2 3 4 5 6 7 8 9 1011 121314 15 16

RS
RW

E

MSBLSB

Row 1

Row 2

Row 3

Row 4

LCD Routines:

Assume PORTD is used with

PORTD 7 6 5 4 3 2 1 0

LCD D7 D6 D5 D4 E R/S R/W -

void Wait_ms(unsigned int X)

Pause Xms then return.

void LCD_Init(void)

Initialize the LCD display, set the cursor to go from left to right, set the cursor to blink,
move to top left corner.

void LCD_Move(unsigned char R, C)

Move the cursor to row R column C.

void LCD_Write(unsigned char DATA)

DATA written to the present position on the LCD display. Move the cursor one to the
right.

void LCD_Out(unsigned int DATA, unsigned char D, unisgned char N)

DATA written to the display
D: The number of digits to display
N: The number of digits to the right of the decimal point to display

For example,

LCD_Out(12345, 6, 3)

outputs
012.345

void LCD_Inst(0x01);

clear the LCD display

Example 1: Write a routine to send

0..19 to the LCD display starting at row 0, column 0.
48..67 to the LCD display starting at row 1, column 0

// Global Variables

// Subroutine Declarations

#include <pic18.h>

// Subroutines

#include "lcd_portd.c"

void main(void)

{
 unsigned char i;

 LCD_Init();

 LCD_Move(0,0);

 for (i=0; i<20; i++) LCD_Write(i);

 LCD_Move(1,0);

 for (i=48; i<68; i++) LCD_Write(i);

 while(1);

 }

ASCII Table
www.ASCIITable.com

Example 2: Count as fast as you can

#include <pic18.h>

#include "lcd_portd.c"

void main(void)

{

 unsigned int COUNT;

 unsigned int i;

 ADCON1 = 0x0F;

 LCD_Init();

 COUNT = 0;

 Wait_ms(100);

 while(1) {

 COUNT = COUNT + 1;

 LCD_Move(1,0);

 LCD_Out(COUNT, 5, 1);

 }

}

Example 3: Count every 100ms. Display time in seconds

Count every 100ms

 while(1) {

 LCD_Move(1,0);

 LCD_Out(MIN,5,0);

 LCD_Write(':');

 LCD_Out(SEC,5,1);

 SEC = SEC + 1;

 RA0 = 1;

 Wait_ms(100);

 RA0 = 0;

 }

}

Timing:

RA1 = 1

Wait loop
100ms

RA1 = 0

Rest of code
8.1ms

To make the loop take 100ms

Rest of code = 8.1ms
Wait_ms(92) waits 92ms
Total = 100ms

The Power of C

Write the code for a roulette wheel:

Press RB0 to place your bet (winning number is
always 0)
Display your bet on row #1
Generate a random number N from 0..7
Count 42 + N times (mod 8)

- Display that number on the LCD dispay
- Pause 100ms between counts
- Beep at 220Hz each count

If you stop on 0, you win!
- Add $8 to your bank total
- Otherwise you lose $1

Start again when you press RB0

Note: Use the LCD display to check your code as
you write it

Bottom-Up Programming

Step 1: Generate a random number
from 0..7

Wait for a button press
When pressed, count really fast
mod 8
When released, the count is your
random number
Display the number on the LCD
display

Winning Numbers:

2, 3, 0, 4, 5, 5, 5, 4, 7, 1, 2, 5, 7, 0,
3, 6, 6, 6, 5, 0, 0, 1, 4, 6
Is this random???

Step 2: Rotate the marble 42+N times

Play with the user
Pause 100ms between
The computer knows the winning number
as soon as you release the button

Display the ball position on the LCD
display

You should see the number changing
rapidly (every 100ms)
Slow down the code if you want to see
what's happening
Wait_ms(100); >>>> Wait_ms(500);

Step 3: Beep with each number

i = number of toggles
- 50 toggles
- 25 pulses

j sets the period & frequency

Step 4: Slow down as you get close to the end

Count down from 32+N to 0
Wait 50ms / number for N large
Wait 1000ms at the end (N==1)

Use the LCD display to show the
current ball position

Resulting Code:

3130 Bytes (1565 lines of assembler)

Improvements:

Display the marble or PORTC
- Each LED is a winning number, 0..7

Allow bets on other numbers
- Use buttons RB0..RB7

Rig the game
- Fair game 90% of the time
- Always lose by one 10% of the time

Summary

LCD displays are really useful:

You can proved a lot more information than just LEDs

Bottom-Up Programming helps with writing complicated routines

Build the code step-by-step
Check your code as you write it
LCD display is a good way of seeing what your code is doing

You can write fairly complicated routines in C fairly quickly

Roulette wheel code was written in under 30 minutes
Result was 1565 lines of assembler
(Assembler would take a lot longer to write).

