Chi-Squared Test

ECE 376 Embedded Systems

Jake Glower - Lecture \#15
Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Statistics

- Every time you roll a die, you get a different result.
- Every time you run an experiment, you get different results.

Statistics is a branch of mathematics which allow you to analyze such random events.

With statistics, you can answer such questions as

- Is the 6 -sided die biased? (do some numbers come up too often?)
- What is the 90% confidence interval for the energy in a AA battery?
- Does a lid significantly increase the thermal resistance of a hot cup of water?

The next two lectures provide a brief overview of statistics and how to take data that we collected in our last lecture and analyze that data.

Chi-Squared Test

Is your data is consistent with an assumed distribution?

- Is a die is fair? (each number has equal probability)
- Is a distribution is Normal? (vs. Poisson or geometric)

Example: Roll a 6-sided die 120 times

Procedure

i) Collect data.
ii) Splint the data into M bins.

- $\{1\}\{2\}\{3\}\{4\}\{5\}\{6\}$
- $\{1,2,3\}\{4,5\}\{6\}$
iii) Compute the Chi-Squared value

$$
\chi^{2}=\sum\left(\frac{\left(n p_{i}-N_{i}\right)^{2}}{n p_{i}}\right)
$$

where

- np is the expected frequency of data falling into bin \#i, and
- Ni is the actual frequency of data falling into bin $\# \mathrm{i}$
iv) Convert the Chi-Squared value to a probability
- Chi-Squared table (or StatTrek).

Chi-Squred Table

- The degrees of freedom are the number of bins minus one
- The number in the table is the Chi-Squred value
- The numbers on the top give you the probability of rejecting the null hypothesis

Chi-Squared Table

Probability of rejecting the null hypothesis

df	99.5%	99%	97.5%	95%	90%	10%	5%	2.5%	1%	0.5%
1	7.88	6.64	5.02	3.84	2.71	0.02	0	0	0	0
2	10.6	9.21	7.38	5.99	4.61	0.21	0.1	0.05	0.02	0.01
3	12.84	11.35	9.35	7.82	6.25	0.58	0.35	0.22	0.12	0.07
4	14.86	13.28	11.14	9.49	7.78	1.06	0.71	0.48	0.3	0.21
5	16.75	15.09	12.83	11.07	9.24	1.61	1.15	0.83	0.55	0.41

Interpreting the Results

Large χ^{2} Score:

- The data is inconsistent with your assumed distribution
- The die is probably loaded

Small χ^{2} Score:

- The data is too good
- The data was probably fudged

Chi-Squared Table

Probability of rejecting the null hypothesis

| df | 99.5% | 99% | 97.5% | 95% | 90% | 10% | 5% | 2.5% | 1% | 0.5% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.88 | 6.64 | 5.02 | 3.84 | 2.71 | 0.02 | 0 | 0 | 0 | 0 |
| 2 | 10.6 | 9.21 | 7.38 | 5.99 | 4.61 | 0.21 | 0.1 | 0.05 | 0.02 | 0.01 |
| 3 | 12.84 | 11.35 | 9.35 | 7.82 | 6.25 | 0.58 | 0.35 | 0.22 | 0.12 | 0.07 |
| 4 | 14.86 | 13.28 | 11.14 | 9.49 | 7.78 | 1.06 | 0.71 | 0.48 | 0.3 | 0.21 |
| 5 | 16.75 | 15.09 | 12.83 | 11.07 | 9.24 | 1.61 | 1.15 | 0.83 | 0.55 | 0.41 |

Example 1: Fair Die

Does this code produce a fair die?

```
while(1) {
    while(!RB0);
    while(RBO) DIE = (DIE + 1) % 6;
    DIE += 1;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```


Experiment:

- Divide the results into M bins (6 bins in this case: numbers 1 .. 6)
- Collect n data points.
- Count how many times the data fell into each of the M bins
- Compute the Chi-Squared total for each bin as
$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
- np is the expected number of times data should fall into each bin
- N is the actual number of times data fell into each bin
- Use a Chi-Squared table to convert the resulting Chi-Squared score to a probability. Note that the degrees of freedom is equal to the number of bins minus one.

Example: $\mathrm{n}=129$ die rolls

Number	1	2	3	4	5	6
Frequency	23	16	22	24	29	15

Compare expected vs. actual frequency

- Compute the χ^{2} score

Die Roll (bin)	p theoretical probability	np expected frequency	N actual frequency	$\because ; \chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	21.5	23	0.1
2	$1 / 6$	21.5	16	1.41
3	$1 / 6$	21.5	22	0.01
4	$1 / 6$	21.5	24	0.29
5	$1 / 6$	21.5	29	2.62
6	$1 / 6$	21.5	15	1.97

Convert χ^{2} to a probability

- Use a Chi-Squared table
- 5 degrees of freedom (6 bins)
- $\chi^{2}=6.39$ means $\mathrm{p}=73 \%$
- I am 73% certain this is a loaded die
- (no conclusion)
- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	5
Chi-square critical value (CV)	$\square 6.39$
$P\left(X^{2}<6.39\right)$	$\square 0.73$
$P\left(X^{2}>6.39\right)$	$\square 0.27$

Chi-Squared Tapre
Probability of rejecting the null hypothesis

| df | 99.5% | 99% | 97.5% | 95% | 90% | 10% | 5% | 2.5% | 1% | 0.5% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.88 | 6.64 | 5.02 | 3.84 | 2.71 | 0.02 | 0 | 0 | 0 | 0 |
| 2 | 10.6 | 9.21 | 7.38 | 5.99 | 4.61 | 0.21 | 0.1 | 0.05 | 0.02 | 0.01 |
| 3 | 12.84 | 11.35 | 9.35 | 7.82 | 6.25 | 0.58 | 0.35 | 0.22 | 0.12 | 0.07 |
| 4 | 14.86 | 13.28 | 11.14 | 9.49 | 7.78 | 1.06 | 0.71 | 0.48 | 0.3 | 0.21 |
| 5 | 16.75 | 15.09 | 12.83 | 11.07 | 9.24 | 1.61 | 1.15 | 0.83 | 0.55 | 0.41 |

Example 2: Loaded Die

- 90% of the time, the die is fair (all results have equal probability)
- 10% of the time, the result is always a 6 .

Can you detect that the die is fair after 100 rolls?
Code:

```
while(1) {
    while(!RB0);
    while(RBO) {
        DIE = (DIE + 1) % 6;
        X = (X+1) % 101;
        }
    if(X < 10) DIE = 6;
    else DIE += 1;
    LCD_Move(1,0); LCD_Out(DIE, 1, 0);
    SCI_Out(DIE, 1, 0);
    SCI_CRLF();
    }
```

Roll the dice 100 times

Number	1	2	3	4	5	6
Frequency	17	14	14	14	15	26

Compute the Chi-Squared value

Die Roll (bin)	p theoretical probability	np expected frequency	N actual frequency	$\chi^{2}=\left(\frac{\left(n p-N^{2}\right.}{n p}\right)$
1	$1 / 6$	16.67	17	0.01
2	$1 / 6$	16.67	14	0.43
3	$1 / 6$	16.67	14	0.43
4	$1 / 6$	16.67	14	0.43
5	$1 / 6$	16.67	15	0.17
6	$1 / 6$	16.67	26	5.22

Use a Chi-Squared table (or StatTrek) to convert this back to a probability:

- $\mathrm{p}=0.75$
- I am 75% certain that this is a loaded die
- (no conclusion)

Note:

- It is hard to detect that a die is loaded with only 100 rolls
- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	$\boxed{5}$
Chi-square critical value (CV)	$\square 6.6787$
$P\left(X^{2}<6.6787\right)$	$\square 0.75$
$P\left(X^{2}>6.6787\right)$	0.25

Repeat for 348 rolls:

Die Roll (bin)	p theoretical probability	np expected frequency	N actual frequency	$\chi^{2}=\left(\frac{\left.(n p-N)^{2}\right)}{n p}\right)$
1	$1 / 6$	58	55	0.16
2	$1 / 6$	58	55	0.16
3	$1 / 6$	58	58	0
4	$1 / 6$	58	43	3.88
5	$1 / 6$	58	57	0.02
6	$1 / 6$	58	80	8.34

Now you can start to detect that the die is loaded with a probability of 97.5% :

- With enough data, you can detect that the die is loaded
- You're also probably broke at this point...

Example 3: How loaded is too loaded?

- Load a die
- 5% chance of detection after 120 rolls
- "detect" means p(loaded) $=95 \% ~\left(\chi^{2}=11.1\right)$

Die Roll (bin)	p theoretical probability	np expected frequency	N actual frequency	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$
1	$1 / 6$	20	$20-\mathrm{x} / 5$	$\left(\frac{\left.(x / 5)^{2}\right)}{20}\right)$
2	$1 / 6$	20	$20-\mathrm{x} / 5$	$\left(\frac{\left.(x / 5)^{2}\right)}{20}\right)$
3	$1 / 6$	20	$20-\mathrm{x} / 5$	$\left(\frac{\left.(x / 5)^{2}\right)}{20}\right)$
4	$1 / 6$	20	$20-\mathrm{x} / 5$	$\left(\frac{\left.(x / 5)^{2}\right)}{20}\right)$
5	$1 / 6$	20	$20-\mathrm{x} / 5$	$\left(\frac{\left.(x / 5)^{2}\right)}{20}\right)$
6	$1 / 6$	20	$20+\mathrm{x}$	$\left(\frac{x^{2}}{20}\right)$

Result:

- You can get away with an extra 13.84 sixes

The loading is then 11.5%

$$
\left(\frac{13.84}{120}\right)=0.115
$$

Note:

- If you get too greedy, the customer will notice.
- It's hard to tell if a die is loaded unless you make lots and lots of rolls.
- This is what Alan Turing was referring to in the movie "The Imitation Game"
- Sink too many German subs and they'll know you cracked their code
- Chi-squared tests tell you what "too many" means

Example 4: Fudging Data

Chi-Squared tests can also detect if data was fudged

- If the Chi-Squared score is too large (16.75) the die is probably loaded
- If it's too small (less than 0.41), the data is probably fudged. It's too good.

Chi-Squared Table

| df | 99.5% | 99% | 97.5% | 95% | 90% | 10% | 5% | 2.5% | 1% | 0.5% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 7.88 | 6.64 | 5.02 | 3.84 | 2.71 | 0.02 | 0 | 0 | 0 | 0 |
| 2 | 10.6 | 9.21 | 7.38 | 5.99 | 4.61 | 0.21 | 0.1 | 0.05 | 0.02 | 0.01 |
| 3 | 12.84 | 11.35 | 9.35 | 7.82 | 6.25 | 0.58 | 0.35 | 0.22 | 0.12 | 0.07 |
| 4 | 14.86 | 13.28 | 11.14 | 9.49 | 7.78 | 1.06 | 0.71 | 0.48 | 0.3 | 0.21 |
| 5 | 16.75 | 15.09 | 12.83 | 11.07 | 9.24 | 1.61 | 1.15 | 0.83 | 0.55 | 0.41 |

Fudging Data Example

- Roll a die 129 times
- Add 200 to each result
- It looks like I rolled the dice 1329 times.
- $p\left(\chi^{2}=0.62\right)=0.01$
- The odds against getting such good data are 100:1 against.
- Most likely the data was faked.

Die Roll	p	np	N	$\chi^{2}=\left(\frac{\left(n p-N^{2}\right.}{n p}\right)$
1	$1 / 6$	221.5	223	0.01
2	$1 / 6$	221.5	216	0.14
3	$1 / 6$	221.5	222	0
4	$1 / 6$	221.5	224	0.03
5	$1 / 6$	221.5	229	0.25
6	$1 / 6$	221.5	215	0.19

Chi-Squared with Continuous Distributions

Also works with continuous distributions

- Split the continuous variable into N distinct regions / bins (many ways to do this)
- Calculate the probability that any given data point will fall into each region,
- Calculate the expected number of observations you should have in each region,
- Compare the expected number of observations (np) to the actual number (N)
- Convert the chi-squared score into a probability.

Example: Is this a Normal distribution?

```
X = sum( rand(12,1) ) - 6
```

- Generate 100 random numbers

```
X = [];
for i=1:100
    X = [X ; sum( rand(12,1) ) - 6];
    end
```

- Split the X axis into 8 regions (A..H) (this is somewhat arbitrary).
- Compute the probability of each region (p) and the expected frequency (np)
- Count how many times X fell into each region (N)
- From this, create a Chi-Squared table

Compute the Chi-Squared score

$$
\chi^{2}=4.79
$$

Region (bin)	p	np	N	$\chi^{2}=\left(\frac{(n p-N)^{2}}{n p}\right)$		
A	0	0.1	0	0.1		
B	0.02	2.2	2	0.02		
C	0.14	13.8	14	0		
D	0.34	34.1	30	0.49		
E	0.34	34.1	42	1.83		
F	0.14	13.8	13	0.05		
G	0.02	2.2	0	2.2		
H	0	0.1	0	0.1		

Convert to a probability

- $\mathrm{p}=0.31$
- 31% chance this is not a normal distribution
- no conclusion
- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	7
Chi-square critical value (CV)	$\square 4.79$
$P\left(X^{2}<4.79\right)$	0.31
$P\left(X^{2}>4.79\right)$	0.69

Note: With enough data you can detect the difference

- 100,000 numbers
- The information is in the tails

Region (bin)	p	np	N	$\chi^{2}=\left(\frac{\left(n p-N^{2}\right.}{n p}\right)$
A	0	132	97	9.28
B	0.02	2,140	2,085	1.41
C	0.14	13,591	13,751	1.88
D	0.34	34,134	34,067	0.13
E	0.34	34,134	33,845	2.45
F	0.14	13,591	13,895	6.8
G	0.02	2,140	2,168	0.37
H	0	132	88	14.67

Summary

A chi-squared test is a test of a distribution

- Is your data consistent with the assumed distribution.

With it, you can

- Detect whether a die is fair or loaded,
- Calculate how much you can "cheat" without getting caught,
- Detect if someone fudged their data,

