Chi-Squared Examples

ECE 376: Embedded Systems
 Lecture \#15b

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

Chi-Squared Test

- Is the data consistent with an assumed distribution?

Procedure

- Collect Data
- Split into N bins
- Compare the expected frequency (np) for each bin vs. observed frequency (N)

$$
\chi^{2}=\sum\left(\frac{\left(n p_{i}-N_{i}\right)^{2}}{n p_{i}}\right)
$$

- Use a chi-squred table to convert the chi-sqared score to a probability

This Lecture:

- Are world temperatures changing?
- Does the gain of a transistor have a uniform distribution?
- Does the gain of a transistor have a normal distribution?
- Am I psychic?

Are world temperatures changing?

NASA Goddard has been monitoring world temperatures since 1880 .

- 8 of the past 10 years have been the hottest on record. Is this random?
- Is there a pattern?

These are actually chi-squared tests

World Temperature Deviation

Degrees C

8 of the Past 10 Years have been in the top-10 hottest years...

H0: Assume all years have equal probability of being in the top 10 hottest years

- $\mathrm{p}($ hottest $)=10 / 141$
- $\mathrm{p}($ other $)=131 / 141$

Set up a chi-squared table

	p	np	N	chi-squared
hottest 10	$10 / 141$	0.709	8	74.977
other	$131 / 141$	9.291	2	7.72

Use a chi-squred table to convert 80.699 to a probability $\mathrm{p}($ reject $)=1.0000$

- actually p (reject) >0.99995
- (rounding)
- (nothing is 100% certain)
- There is at least a 99.995% chance that all years are not equally likely

You can calculate the odds binomial distribution (coin toss)

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

$p(m)=\binom{n}{m} p^{m}(1-p)^{n-m}$
$p(8)=\binom{10}{8}\left(\frac{10}{141}\right)^{8}\left(\frac{131}{141}\right)^{2}$
$p(8)=0.00000002486$

Is there a pattern?

A little harder to analyze the data for this question.

Split the data into 9 regions

- First 47 years, middle 47 years, last 47 years
- Hottest 47 years, middle 47 years coldest 47 years

If there is no pattern, each region should contain 1/9th of the data

Global Temperature Deviations
NASA Goddard

Chi-Squared Test

Region	p	np	N	chi-squared
$(1,1)$	$1 / 9$	15.67	0	15.67
$(1,2)$	$1 / 9$	15.67	5	7.27
$(1,3)$	$1 / 9$	15.67	42	44.24
$(2,1)$	$1 / 9$	15.67	9	2.84
$(2,2)$	$1 / 9$	15.67	33	19.17
$(2,3)$	$1 / 9$	15.67	5	7.27
$(3,1)$	$1 / 9$	15.67	38	31.82
$(3,2)$	$1 / 9$	15.67	9	2.84
$(3,3)$	$1 / 9$	15.67	0	15.67

Global Temperature Deviations

 NASA GoddardDegrees C

Use a chi-squared table to convert this to a probability

- StatTrek

Again, this is *way* off the chart

- 8 degrees of freedom
- chi-squared score of 146.78
- p(reject) >0.99995
- Rounded to 1.0000
- (nothing is 100% certain)

The data is almost certainly not random

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Is Fargo Getting Warmer?

Data:

- Hector Airport has been measuring the temperature in Fargo since 1942
- High / average / low for each month and year
- https://www.wunderground.com/history/monthly/us/nd/fargo/KFAR/date/2020-7
- http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Avg.txt

Use the yearly average since 1942

Fargo Yearly Average Temperature Degrees F

Procedure

There isn't a lot of data (79 data points).

- Split into 9 bins (should get 8.77 events per bin)
- Split years into 3 intervals
- Split temperature into 3 tiers

Count how many times a given year falls into each bin

Fargo Yearly Average Temperature

Chi-Squared Test

Years	Tier	np	Actual	Chi-Squared
1942	hot	8.56	5	1.4806
19 1967	middle	8.56	10	0.2422
	cold	8.56	11	0.6955
1968	hot	8.56	6	0.7656
	middle	8.56	9	0.0226
	cold	8.56	11	0.6955
1994	hot	8.56	14	3.4572
	middle	8.56	7	0.2843
	cold	8.56	4	2.4292
Total				$\mathbf{1 0 . 0 7 2 7}$

Fargo Yearly Average Temperature Degrees F

Interpreting the Result

Convert the chi-squared score to a probability

- Chi-squared table
- StatTrek

With 8 degrees of freedom (9 bins), a chi-squared score of 10.07 corresponds to a probability of at least 0.74

I'm 74\% certain that the temperature in Fargo is changing

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Does the gain of a transistor have a uniform distribution?

Each transistor's gain is slightly different.
Does a uniform distribution describe the variability in a transistor's gain?
Is the gain measured consistent with a uniform distribution?

Data:

- Measure the gain of 62 Zetex 1051a transistors
- Sort the gains and plot

Zetex 1051a Transistor

Data Analysis

Null Hypothesis:

- The gain of a Zetex 1051a transistor has a uniform distribution over the range of $(600,1200)$

Split this into N regions

- $(0,600)$
- $(600,700)$
- :
- (1100, 1200),
- (1200, infinity)

Count the number of occurrences in each bin

Zetex 1051a Transistor

Chi-Squred Test

gain	np	Actual	Chi-Squared
>1200	0	0	0
$1100-1199$	10.33	1	8.4268
$1000-1099$	10.33	7	1.0735
$900-999$	10.33	13	0.6901
$800-899$	10.33	16	3.1122
$700-799$	10.33	21	11.0212
$600-699$	10.33	4	3.8789
$0-599$	0	0	0
Total			28.2027

Zetex 1051a Transistor
Gain (hfe)

Interpreting the Results

Convert the chi-squared score to a probability

- Chi-squared table
- StatTrek

With 7 degrees of freedom (8 bins), a chi-squared score of 28.2 corresponds to a probability of at least 0.9998

I'm 99.98\% certain that the gain of a Zetex 1051a transistor does not have a uniform distribution

- The data is inconsistent with a uniform distribution
- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Does the gain of a transistor have a Normal distribution?

- mean $=854.1290$
- standard deviation $=120.2034$

Same procedure as before but the probabilities change

- Use a normal distribution and a z-score to determine the probability of each region

Zetex 1051a Transistor Gain (hfe)

Probabilities of Each Region

- Use StatTrek to find the cdf
- From that, find the probability of each region

region	cdf	p (region)
1,200	0.998	0.018
1,100	0.98	0.092
1,000	0.888	0.239
900	0.649	0.323
800	0.326	0.226
700	0.1	0.083
600	0.017	0.017

- Enter a value in three of the four text boxes
- Leave the fourth text box blank.
- Click the Calculate button to compute a value for the blank text box.

Normal random variable (x)	800
Cumulative probability: $\mathrm{P}(\times \leq$	
800)	0.326
Mean	854.12
Standard deviation	120.2

Chi-Squred Calculations

Use the probabilities from the previous slide

gain	p	np	Actual	Chi-Squared
>1200	0.002	0.124	0	0
$1100-1199$	0.018	1.116	1	0.0121
$1000-1099$	0.092	5.704	7	0.2945
$900-999$	0.239	14.818	13	0.223
$800-899$	0.323	20.026	16	0.8094
$700-799$	0.226	14.012	21	3.485
$600-699$	0.083	5.146	4	0.2552
$0-599$	0.017	1.054	0	1.054
Total				

Interpreting the Results

A chi-squared score of 6.13 corresponds to a probability of 0.48

- There is a 48% chance of rejecting the null hypothesis (this is a normal distribution)

Midrange numbers like this mean "no conclusion"

- The data is consistent with a normal distribution
- the chi-squred score is not too large
- It does not appear that the data was fudged
- The chi-squared score is not too small
- Enter a value for degrees of freedom
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes.

Degrees of freedom	
	\square
Chi-square critical value (CV)	\square
$P\left(X^{2}<6.13\right)$	$\square .13$
$P\left(X^{2}>6.13\right)$	0.48

Am I Psychic?

- Take a deck of playing cards
- Shuffle them
- Predict the suit for the top card
- Flip it up and place in one pile if correct, another pile if incorrect
- Count how many times I'm right
- Use a chi-squared test to see if I'm able to foresee the suit with odds that pure chance cannot explain

Data

- Predicted Correctly: 10 times
- Predicted Incorrectly: 42 times

Chi-Squred Test

case	np	Actual	Chi-Squared
Correct	13	10	0.6923
Incorrect	39	42	0.2308
Total			0.9231

- Enter a value for degrees of freedom.
- Enter a value for one, and only one, of the remaining unshaded text boxes.
- Click the Calculate button to compute values for the other text boxes

Degrees of freedom	\square
Chi-square critical value (CV)	$\square 0.9231$
$\mathrm{P}\left(\mathrm{X}^{2}<0.9231\right)$	\square
$\mathrm{P}\left(\mathrm{X}^{2}>0.9231\right)$	$\square .66$
	0.34

Result:

- probability =66\%
- There is a 66% chance of rejecting the null hypothesis
- 66% chance I'm not just guessing randomly
- 66% chance I'm worse than the monkey score

Summary:

A chi-squared test is a test of a distribution

- Is your data consistent with the assumed distribution.

With it, you can

- Determine if global temperatures are random
- If Fargo is getting warmer,
- If the gain of a transistor has a uniform or normal distribution, and
- If you're psychic

