
Timer0 Interrupts
ECE 376 Embedded Systems

Jake Glower - Lecture #20
Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Timer0 Interrupts
Timer interrupts are pretty useful: the PIC18F4620 has four:

Interrupt Description Input Conditions Enable Flag

Timer 0 Trigger after N events

N = 1 .. 2^24

100ns to 1.67 sec

RA4:

TOCS = 1

OSC/4:

TOCS = 0

N = (PS)(Y)

T0CON = 0x88: PS = 1

T0CON = 0x87: PS = 256

TMR0 = -Y

TMR0ON = 1

TMR0IE = 1

TMR0IP = 1

PEIE = 1

TMR0IF

Timer 1 Trigger after N events

N = 1 .. 2^19

100ns to 0.52 sec

RC0

TMR1CS = 1

OSC/4

TMR1CS = 0

N = (PS)(Y)

T1CON = 0x81: PS = 1

T1CON = 0xB1: PS = 8

TMR1 = -Y

TMR1ON = 1

TMR1IE = 1

TMR1IP = 1

PEIE = 1

TMR1IF

Timer2 Interupt every N clocks

N = 1 .. 65,535

100ns to 6.55ms

OSC/4 N = A * B * C

A = 1..16 (T2CON 3:6)

B = 1..256 (PR2)

C = 1, 4, 16 (T2CON 0:1)

T2E = 1

TMR2IE = 1

PEIE = 1

TMR2IF

Timer 3 Trigger after N events

N = 1 .. 219

100ns to 0.52 sec

RC1

TMR3CS = 1

OSC/4

TMR3CS = 0

N = (PS)(Y)

T3CON = 0x81: PS = 1

T3CON = 0xB1: PS = 8

TMR3 = -Y

TMR3ON = 1

TMR3IE = 1

TMR3IP = 1

PEIE = 1

TMR3IF

Timer0 Interrupt
Similar to Timer1 & Timer3

Input can be either

External input, RA4 (T0CS = 0), or

10MHz clock (T0CS = 1)

The input goes to a divider (pre-scalar)

Timer0: PS = {1, 2, 4, 8, 16, 32, 64, 128, 256}

Timer1 & 3: PS = {1, 2, 4, 8}

Result goes to a 16-bit counter

10MHz

Clock

RA4
T0CS=1

T0CS=0

PS TMR0

16-bit counter1,2,4,..,256

Interupt when TMR0 goes from 0xFFFF to 0x0000

Timer 0 Interrupt

What triggers the interrupt is TMR0 going to 0x0000
 TMR0

0xFFFD -3

0xFFFE -2

0xFFFF -1
0x0000 0 Interrupt Triggered

0x0001 +1

0x0002 +2

Net Result

N = 1 to 2^24

External Events: Count every 7th Button Push

One use of TIMER0 is to count every Nth rising edge. To do this

Set the input to RA4 (T0CS = 1)

Set up TMR0 = -7

after seven rising edges, TMR0 = 0, which triggers the interrupt

Inside the interrupt service routine, reset TMR0 = -7

the next interrupt will be 7 rising edges later.

T0_Ext.c: Count every 7th Button Push

Interrupt Service Routine

Count every 7th edge

Interrupt Initialization

External Input, PS = 1

void interrupt IntServe(void)

{
 if (TMR0IF) {

 TMR0 = -7;

 N += 1;

 TMR0IF = 0;

 }

 }

// PS = 1

 T0CON = 0x88;

// External Input

 T0CS = 1;

// Enable Timer0

 TMR0ON = 1;

 TMR0IE = 1;

 TMR0IP = 1;

 PEIE = 1;

 GIE = 1;

T0_Ext.c: Count every 7th Button Push
What triggers the interrupt is TMR0 going 0x0000.

If you do nothing, TMR0 won't return to 0x0000 for another 65,536 counts

If you don't initialize TMR0, the first interrupt may not happen for 65,535 events

Main Routine Result

while(1) {

 LCD_Move(0,8);

 LCD_Out(-TMR0, 5, 0);

 LCD_Move(1,8);

 LCD_Out(N, 5, 0);

 }

Timer0: Default Rate with PS = 1:
Change T0CS = 0

Counts clocks

Interrupts every N clocks

1 < N < 2^24

Similar to Timer2

Default with PS = 1 is 65,536

TMR0 = 0x0000 triggers the interrupt

This won't happen again for another 65,536 (2^16) clocks

Timer0: Default Rate with PS = 1:
Interrupts every 6.5536ms

Interrupt Service Routine Result

void interrupt IntServe(void)

{

 if (TMR0IF) {

 RC0 = !RC0;

 TMR0IF = 0;

 }

 }

Timer0 Interrupt every 1ms
You have to set up the next interrupt each time you interrupt

Different than Timer2

Interrupt Service Routine Result

void interrupt IntServe(void)

{

 if (TMR0IF) {

 TMR0 = -10000;

 RC0 = !RC0;

 TMR0IF = 0;

 }
 }

Note: The timing is off by about 50 clocks

The time it takes to trigger the interrupt

Interrupt Service Routine

N = 100

Result

N is actually 150

void interrupt IntServe(void)

{

 if (TMR0IF) {

 TMR0 = -100;

 RC0 = !RC0;

 TMR0IF = 0;

 }

 }

Playing Note D5: 587.33Hz

N =

10,000,000

2⋅Hz

 = 8513.1017

This is way easier than Timer2

Interrupt Service Routine Result

// Global Variable

unsigned int N = 8513 - 50;

void interrupt IntServe(void)

{

 if (TMR0IF) {

 TMR0 = -N;

 RC0 = !RC0;

 TMR0IF = 0;

 }

 }

Measuring Time to 100ns

With Timer0, you can measure time to 100ns

TIME: 32-bit variable (long integer)

TMR0: Low 16-bits (100ns resolution)

High 16-bits: Increment every Timer0 interrupt

TIME 32-bit variable

high 16 bits low 16 bits

TIME(31:16) TMR0

Measuring Time to 100ns
Interrupt Service Routine Main Routine

// Global Variables

unsigned long int TIME;

// Interrupt Service Routine

void interrupt IntServe(void)

{
 if (TMR0IF) {

 TIME = TIME + 0x10000;

 RC0 = !RC0;

 TMR0IF = 0;

 }

while(1) {

 LCD_Move(1,0);

 LCD_Out(TIME + TMR0, 10, 7);

 }

Result:

Displaying time in seconds

With a resolution of 0.000 000 1 second (!)

How small is 100ns?

Light travels 100ft in 100ns

Usain Bolt travels 1.044um in 100ns

Human reflex time is about 1/4 second (2,500,000 clocks)

Due to relativity, time slows down by 15ns when you fly to London and back

100ns is really really small

Computers can measure time to an insane degree of accuracy

Measure the execution time to 100ns
Just for fun, determine how long Wait_ms(1000); actually takes

Result = 0.9922861 seconds

Main Routine Result

while(1) {

 TIME0 = TIME + TMR0;

 Wait_ms(1000);

 TIME1 = TIME + TMR0;

 LCD_Move(0,0);

 LCD_Out(TIME1 - TIME0, 7);
 LCD_Out(TIME1 - TIME0, 7);

 }

Time for other operations....
Floating point multiply: 118.3 us

Cosine(1.2345678) 2.3642 ms

atan2(x, y) 2.4278 ms

LCD_Out(Time, 5, 3) 15.5507 ms

LCD_Out(Time, 10, 7) 16.3106 ms

Button Press 46.1127 ms

