
Timer 0/1/2/3 Interrupts
ECE 376 Embedded Systems

Jake Glower - Lecture #21
Please visit Bison Academy for corresponding

 lecture notes, homework sets, and solutions

Timer 0/1/2/3 Interrupts

With a single processor, you can only do one thing at a time:

You can drive the LCD display, or

You can measure time, or

You can output a precise freqeucy.

With Timer2 interrupts, you can now do two things at the same time:

One using the Timer2 interrupt (measure time or output a precise frequency), and

One using the main routine (drive the LCD display, read the buttons, etc.)

With Timer0/1/2/3 interrupts, you can do five things at the same time.

It can get confusing, but if you can figure out interrupts, they make some problems a lot

easier to solve

Timer 0/1/2/3 Set Up

To get each interrupt to run, you need to

Set the condition of the interrupt (input, N),

Enable the interrupt, &

Acknowledge the interrupt (clear flag) when done

Interrupt Description Input Conditions Enable Flag

Timer 0 Trigger after N events

N = 1 .. 2^24

100ns to 1.67 sec

RA4:

TOCS = 1

OSC/4:

TOCS = 0

N = (PS)(Y)

T0CON = 0x88: PS = 1

T0CON = 0x87: PS = 256

TMR0 = -Y

TMR0ON = 1

TMR0IE = 1

TMR0IP = 1

PEIE = 1

TMR0IF

Timer 1 Trigger after N events

N = 1 .. 2^19

100ns to 0.52 sec

RC0

TMR1CS = 1

OSC/4

TMR1CS = 0

N = (PS)(Y)

T1CON = 0x81: PS = 1

T1CON = 0xB1: PS = 8

TMR1 = -Y

TMR1ON = 1

TMR1IE = 1

TMR1IP = 1

PEIE = 1

TMR1IF

Timer2 Interupt every N clocks

N = 1 .. 65,535

100ns to 6.55ms

OSC/4 N = A * B * C

A = 1..16 (T2CON 3:6)

B = 1..256 (PR2)

C = 1, 4, 16 (T2CON 0:1)

T2E = 1

TMR2IE = 1

PEIE = 1

TMR2IF

Timer 3 Trigger after N events

N = 1 .. 219

100ns to 0.52 sec

RC1

TMR3CS = 1

OSC/4

TMR3CS = 0

N = (PS)(Y)

T3CON = 0x81: PS = 1

T3CON = 0xB1: PS = 8

TMR3 = -Y

TMR3ON = 1

TMR3IE = 1

TMR3IP = 1

PEIE = 1

TMR3IF

Chords (Chord.c)

Do five things at the same time:

Play note A3/B3/C4 on RC0

Play note C4/D4/E4 on RC1

Play note E4/F4/G4 on RC2,

Monitor the push buttons every 1ms, and

Display the note being played on the LCD display.

Step #1: Assign interrupts and what note you play on the output pin

Interrupt Timer0 Timer1 Timer3 Timer2

Output Pin RC0 RC1 RC2 -

Button
Pressed

RB0 A3 C4 E4 monitor
PORTB

T = 1ms
RB1 B3 D4 F4

RB2 C4 E4 G4

Step 2: Determine N (# clocks between interrupts)

A3 B3 C4 D4 E4 F4 G4 A4

Hz 220 246.94 261.63 293.66 329.63 349.23 392 440

N 22,727.27 20,247.83 19,110.96 17,026.49 15,168.52 14,317.21 12,755.1 11,363.64

Timer2: N = 10,000

A = 10, B = 250, C = 4

Step 3 Hardware: Send three different notes to one (or more) speakers

Limit the current to 20mA

RC0

RC1

RC2
250

250

250

8

avg()

Step 4: Software

Global Variables

// Global Variables

const unsigned char MSG0[21] = "Chord.C ";

const unsigned char MSG1[21] = "Timer 0/1/2/3 ";

const unsigned int A3 = 22727;

const unsigned int B3 = 20247;

const unsigned int C4 = 19110;

const unsigned int D4 = 17026;
const unsigned int E4 = 15168;

const unsigned int F4 = 14317;

const unsigned int G4 = 12755;

const unsigned int A4 = 11363;

unsigned int N0, N1, N3;

Interrupt Service Routines
// Interrupt Service Routine

void interrupt IntServe(void)

{

 if (TMR0IF) {

 TMR0 = -N0;

 if (PORTB) RC0 = !RC0;

 TMR0IF = 0;

 }

 if (TMR1IF) {

 TMR1 = -N1;

 if (PORTB) RC1 = !RC1;

 TMR1IF = 0;

 }

 if (TMR2IF) {

 if (RB0) { N0 = A3; N1 = C4; N3 = E4; }

 if (RB1) { N0 = B3; N1 = D4; N3 = F4; }

 if (RB2) { N0 = C4; N1 = E4; N3 = G4; }

 if (RB3) { N0 = D4; N1 = F4; N3 = A4; }

 TMR2IF = 0;

 }

 if (TMR3IF) {

 TMR3 = -N3;

 if (PORTB) RC2 = !RC2;

 TMR3IF = 0;

 }

 }

Main Routine: Enable all four interrupts
// set up Timer0 for PS = 1

 T0CON = 0x88;

 T0CS = 0;

 TMR0ON = 1;

 TMR0IE = 1;

 TMR0IP = 1;

 PEIE = 1;

// set up Timer1 for PS = 1

 T1CON = 0x81;

 TMR1CS = 0;

 TMR1ON = 1;

 TMR1IE = 1;

 TMR1IP = 1;

 PEIE = 1;

// set up Timer2 for 1ms

 T2CON = 0x4D;

 PR2 = 249;

 TMR2ON = 1;

 TMR2IE = 1;

 TMR2IP = 1;

 PEIE = 1;

// set up Timer3 for PS = 1

 T3CON = 0x81;

 TMR3CS = 0;

 TMR3ON = 1;

 TMR3IE = 1;

 TMR3IP = 1;

 PEIE = 1;

Main Routine: Display the note being played
 while(1) {

 LCD_Move(0,9); LCD_Out(N0, 4);

 LCD_Move(1,0); LCD_Out(N1, 4);

 LCD_Move(1,9); LCD_Out(N3, 4);

 }

Quad Copter Motor Controller (Quad.C)

Interrupts can change the condition of other interrupts

Example: Quad Copter controller.

Hardware:

Blue Wires: Motor A,B,C

Power (black / red wires):
Red = +6 to +12V DC, capable of 1A

Black = ground

Signal: (3-wire black / red / white)
Black: ground

Red: +5V

White: Signal:

 0.9ms to 2.0ms pulse @ 50Hz

Software: Generate a 50Hz, 0.9mm to 2.0mm 0V/5V pulse

The white signal wire is TTL logic levels (0 / 5V)

The frequency of the pulse should be 50Hz

The pulse width determines the motor speed
0.9ms = Idle & power on

1.2ms = Slow

2.0ms = Fast

Timer0:

Triggered ever 20ms

Sets RC0

Sets up Timer1 interrupt, 0.9ms to 1.2ms later

Timer1:

Clears RC0

20ms (50Hz)

RC0

Timer0 Timer1 Timer0 Timer1

0.9 to 2.0ms

Coding

Timer0 (PS = 4) Timer1 (PS = 1) Main

if (TMR0IF) {
 TMR0 = -50000;

 TMR1 = -N;

 T0 += 1;

 RC0 = 1;

 TMR1IF = 0;

 }

 if (TMR1IF) {
 RC0 = 0;

 T1 += 1;

 TMR1IF = 0;

 }

while(1) {
 if (RB0) N = 9000;

 if (RB1) N = 12000;

 if (RB2) N = 13000;

 if (RB3) N = 14000;

 if (RB4) N = 15000;

 if (RB5) N = 16000;

 if (RB6) N = 17000;

 if (RB7) N = 18000;

 LCD_Move(1,9);

 LCD_Out(N, 4);

 }

Quad Copter Results:

50 Hz square wave (Timer0)

0.9ms to 1.2ms pulse (Timer1)

Frequency Counter (Freq.C)

Measure the frequency of a square wave

Timer1: Cycles

Timer0: Seconds

Cycles / Second = Hz

Timer1 Interrupts (edges)

Timer0 Interrupts (seconds)

Why? Optical Encoders:
Convert motor speed to a frequency

(100 pulses / rotation) * (N rotations / second) = 100N Hz

Wiring:

+5V & Ground

A: 100 pulses / rotation

B: 100 pulses / rotation

A & B are 90 degrees out of phase

Interrupt Selection

Timer0:

Time in seconds

N = 10,000,000

 = 256 * 39250

Timer1:

Counts edges

Assume f < 65,536 Hz

Timer2:

Test signal

Output 500Hz

// Global Variables

unsigned int T0, T1, T2;

// Interrupt Service Routine

void interrupt IntServe(void)

{

 if (TMR0IF) {

 TMR0 = -39250;

 T0 += 1;

 T2 = T1;

 T1 = TMR1;

 TMR0IF = 0;

 }

 if (TMR1IF) {
 TMR1IF = 0;

 }

 if (TMR2IF) {

 RC0 = !RC0;

 TMR2IF = 0;

 }

 }

Interrupt Initialization
// set up Timer0 for PS = 256, input = clock

 T0CS = 0;

 T0CON = 0x87;

 TMR0ON = 1;

 TMR0IE = 1;

 TMR0IP = 1;

 PEIE = 1;

// set up Timer1 for PS = 1, input = RC0

 T1CON = 0x81;
 TMR1ON = 1;

 TMR1IE = 0;

 TMR1IP = 0;

 PEIE = 0;

 TMR1CS = 1;

 TRISC0 = 1;

// set up Timer2 for 0.5ms (1kHz reference signal on RC0)

 T2CON = 0x4D;

 PR2 = 124;

 TMR2ON = 1;

 TMR2IE = 1;

 TMR2IP = 1;
 PEIE = 1;

// turn on all interrupts

 GIE = 1;

Main Loop:
 while(1) {

 Hz = T1 - T2;

 LCD_Move(1,8); LCD_Out(Hz, 0);

 }

Frequency Counter (take 2: Tach.C)

Measure the period of a square wave

More accurate for low-frequency signals

1000 Hz = 1000 edges / second

1000 Hz = 10,000 clocks between edges

It's actually more accurate to measure clocks per edge than edges per second. Plus,

you get a reading every 1ms.

TMR1 TMR1

TMR0

Clocks between edges

RC0

Timer1 interrupts on rising edges on RC0. Timer0 measures the time between interrupts to 100ns

Example: Measure the speed of a 12V DC motor

Black: Ground

Red: Power (0V to +12V DC, capable of 10mA)

Blue: Tachometer output (add a 1k pull-up resistor to +5V to read this signal)

Output = 33Hz @ 5.00V DC

Software:

Timer0

time accurate to 100ns

Timer1

time of rising edges

Timer2

1kHz test signal

if (TMR0IF) {

 TIME = TIME+0x10000;

 TMR0IF = 0;

 }

if (TMR1IF) {

 TMR1 = -1;

 T2 = T1;

 T1 = TIME + TMR0;

 PERIOD = T1 - T2;

 TMR1IF = 0;

 }

if (TMR2IF) {

 RC1 = !RC1;

 TMR2IF = 0;

 }

Main Loop:

Period = 301,536 clocks
 while(1) {

 LCD_Move(0,5); LCD_Out(TIME + TMR0, 7);

 LCD_Move(1,5); LCD_Out(PERIOD, 7);

 }

Pulse Width Modulation (PWM.C)

Objective: Turn on and off a motor / light / heater from 0% on to 100% on

With 10,000 levels of grey, and

At 1kHz

Timer0 sets RC0

Timer0 interrupts every 1ms for 1kHz

When called, it sets up a Timer1 interrupt from 100 to 9900 clocks in the future

When Timer0 kicks in

Timer1 clears RC0

Timer0

Set every 1ms

Timer1

Clear 0.01 to 0.99ms later

Timer0 Timer1

0.01 to 0.99ms0.01 to 0.99ms

RC0

Software:

Timer0

Set RC0

Set up Timer1 0..1ms later

Timer1

Clear RC0

Main Loop

Define PWM

Drive LCD display

if (TMR0IF) {

 TMR0 = -10000;

 TMR1 = -PWM;
 TIME += 1;

 RC0 = 1;

 TMR0IF = 0;

 }

if (TMR1IF) {

 RC0 = 0;

 TMR1IF = 0;
 }

while(1) {

 if (RB0) PWM = 100;

 if (RB1) PWM = 1000;
 if (RB2) PWM = 2000;

 if (RB3) PWM = 3000;

 if (RB4) PWM = 4000;

 if (RB5) PWM = 5000;

 if (RB6) PWM = 6000;

 if (RB7) PWM = 9900;

 LCD_Move(0,7);

 LCD_Out(TIME, 3);

 LCD_Move(1,7);

 LCD_Out(PWM, 2);

 }

Result

1kHz

0.5% to 99.5% PWM

