Filters in the s-Plane NDSU ECE 376

Lecture \#26

Inst: Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

LaPlace Transforms

Circuits with inductors or capacitors are described by differential equaitons

$$
\begin{aligned}
& V=L \frac{d I}{d t} \\
& I=C \frac{d V}{d t}
\end{aligned}
$$

LaPlace transforms assume

$$
y=e^{s t}
$$

giving

$$
\frac{d y}{d t}=s e^{s t}=s y
$$

Differential Equations and Transfer Functions

With the LaPlace assumption, you can turn differential equations into transfer functions

Example:

$$
\frac{d^{3} y}{d t^{3}}+7 \frac{d^{2} y}{d t^{2}}+9 \frac{d y}{d t}+15 y=10 \frac{d x}{d t}+3 x
$$

Using LaPlace notation

$$
s^{3} Y+7 s^{2} Y+9 s Y+15 Y=10 s X+3 X
$$

or

$$
Y=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right) X
$$

$\mathrm{G}(\mathrm{s})$ is called the transfer function

$$
G(s)=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right)
$$

Note that this goes both ways:

Example: Find the differential equation relating X and Y

$$
Y=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right) X
$$

Solution: Cross multiply

$$
\left(s^{3}+7 s^{2}+9 s+15\right) Y=(10 s+3) X
$$

Replace each 's' with $\frac{d}{\omega t}$

$$
\frac{d^{3} y}{d t^{3}}+7 \frac{d^{2} y}{d t^{2}}+9 \frac{d y}{d t}+15 y=10 \frac{d x}{d t}+3 x
$$

Analyzing Filtes for Sinusoidal Inputs

$\mathrm{G}(\mathrm{s})$ is the gain at all frequencies.

- For a specific frequency, substitute $s \rightarrow j \omega$
- Exprss X in phasor form (real $=$ cosine, imag $=-$ sine)
- Output $=$ Gain * Input

Example: Find $y(t)$:

$$
\begin{aligned}
& Y=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right) X \\
& x(t)=2 \cos (4 t)+3 \sin (4 t)
\end{aligned}
$$

Solution: Express X using phasor notation

$$
\begin{aligned}
& X=2-j 3 \\
& s=j 4 \\
& Y=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right)_{s=j 4} X=(-0.138-j 0.372)(2-j 3) \\
& Y=-1.394-j 0.330 \\
& y(t)=-1.394 \cos (4 t)+0.330 \sin (4 t)
\end{aligned}
$$

Example 2: Multiple Inputs

- Use superposition

Example: Find $\mathrm{y}(\mathrm{t})$

$$
\begin{aligned}
& Y=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right) X \\
& x(t)=3 \cos (4 t)+5 \sin (6 t)
\end{aligned}
$$

Solution: Treat this as two separate problems:

$$
\begin{aligned}
& x_{1}(t)=3 \cos (4 t) \\
& x_{2}(t)=5 \sin (6 t)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}_{1}(\mathrm{t})=3 \cos (4 \mathrm{t}) \\
& \quad Y=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right)_{s=j 4}(3+j 0)=0.415-j 1.117 \\
& \quad y_{1}(t)=0.415 \cos (4 t)+1.117 \sin (4 t)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}_{2}(\mathrm{t})=5 \sin (6 \mathrm{t}) \\
& \quad Y=\left(\frac{10 s+3}{s^{3}+7 s^{2}+9 s+15}\right)_{s=j 6}(0-j 5)=-0.642+j 0.640 \\
& y_{2}(t)=-0.642 \cos (6 t)-0.640 \sin (6 t) \\
& y(t)=y_{1}+y_{2}
\end{aligned}
$$

Filter Analysis: Bode Plots

Easy:

- Plug in $s=j \omega$
- Plot gain vs. frequency

Example:

$$
G(s)=\left(\frac{2 s}{s^{2}+2 s+10}\right)
$$

Matlab Code:

```
w = [0:0.01:10]';
S = j*W;
G = 2*S./ (s.^2 + 2*s + 10);
plot(w,abs(G));
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


Filter Design: Poles and Zeros

In general, $G(s)$ will have a numerator and a denominator polynomial

- The zeros are the roots of the numerator polynomial
- The poles are the roots of the denominator polynomial.

$$
G(s)=k\left(\frac{z(s)}{p(s)}\right)
$$

Graphically, this is

$$
G(s)=k \cdot \frac{\Pi(\text { distance from the zeros to } j \omega)}{\Pi(\text { distance from the poles to } j \omega)}
$$

meaning

- Place zeros near frequencies where you want the gain to be small
- Place poles near frequencies where you want the gain to be large

Types of Filters

Filters are categorized into different types:

Filter Type	Characteristic Low-Pass	Low-frequency gain is large (pass) High-frequency gain is small (reject)
High-Pass	High-frequency gain is large (pass) Low-frequency gain is smalle (reject)	$\left(\frac{10}{s+10}\right)$

A filter's order is the number of poles the filter has. In general, the more poles a filter has, the better the filter.

RC Filter:

Closest approximation to an ideal low-pass filter with

- Gain < 1
- No zeros
- Poles can only be real

Example: $\quad G(s)=\left(\frac{10}{s+10}\right)^{n}$

Butterworth Filter

Closest approximation to an ideal low-pass filter with

- Gain < 1
- No zeros
- Poles can be real or complex

Solution: Pole Locations for Corner $=1 \mathrm{rad} / \mathrm{sec}$

	$\mathrm{N}=2$	$\mathrm{~N}=3$	$\mathrm{~N}=4$	$\mathrm{~N}=5$	$\mathrm{~N}=6$
zeros	none	none	none	none	none
poles	$-1 \angle \pm 45^{0}$	-1	$-1 \angle \pm 22.5^{0}$	-1	$-1 \angle \pm 15^{0}$
		$-1 \angle \pm 60^{0}$	$-1 \angle \pm 67.5^{0}$	$-1 \angle \pm 36^{0}$	$-1 \angle \pm 45^{0}$
			$-1 \angle \pm 72^{0}$	$-1 \angle \pm 75^{0}$	

Butterworth Example:

- 5th-Order Butterworth filter
- Corner $=10 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{10^{5}}{\substack{(s+10)\left(s+10 \angle \pm 36^{0}\right)\left(s+10 \angle \pm 72^{0}\right) \\ \text { Gain }}}\right)
$$

Chebychev Filter

Closest approximation to an ideal low-pass filter with

- Gain $<1+\varepsilon$
- No zeros
- Poles can be real or complex

Solution: Pole location for $\varepsilon=0.02$ and corner $=1 \mathrm{rad} / \mathrm{sec}$

	$\mathrm{N}=2$	$\mathrm{~N}=3$	$\mathrm{~N}=4$	$\mathrm{~N}=5$	$\mathrm{~N}=6$
zeros	none	none	none	none	none
poles	$-1.60 \angle \pm 50.7^{0}$	-0.85	$-0.72 \angle \pm 38.5^{0}$	-0.48	$-0.47 \angle \pm 36.1$
		$-1.21 \angle \pm 69.5^{0}$	$-1.11 \angle \pm 77.8^{0}$	$-0.76 \angle \pm 59.3^{0}$	$-0.81 \angle \pm 69.8$
				$-1.06 \angle \pm 82.0^{0}$	$-1.04 \angle \pm 84.4$

Chebychev Example:

- 5th-Order Butterworth filter
- Corner $=10 \mathrm{rad} / \mathrm{sec}$

$$
G(s)=\left(\frac{4.8 \cdot 7.6^{2} \cdot 10.6^{2}}{(s+4.8)\left(s+7.6 \angle \pm 59.3^{0}\right)\left(s+10.6 \angle \pm 82^{0}\right)}\right)
$$

Filter Design with fminsearch()

Another way to design filters is to use the function fminsearch

Problem: Find $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ so that

$$
G(s)=\left(\frac{a}{\left(s^{2}+b s+c\right)\left(s^{2}+d s+e\right)}\right) \approx\left\{\begin{array}{cc}
1 & \omega<4 \\
0 & \text { otherwise }
\end{array}\right.
$$

```
function [ J ] = costf( z )
    \(a=z(1) ;\)
    \(\mathrm{b}=\mathrm{z}(2)\);
    c \(=\) z(3);
    \(d=z(4) ;\)
    e = z(5);
\(\mathrm{w}=[0: 0.01: 10]^{\prime} ;\)
s = j*w;
Gideal \(=1\).* \((\mathrm{w}<4)\);
\(G=a . /\left(\left(s .{ }^{\wedge} 2+b^{*} s+c\right) . *\left(s \cdot{ }^{\wedge} 2+d^{*} s+e\right)\right) ;\)
\(\mathrm{E}=\mathrm{abs}(\mathrm{Gideal})-\mathrm{abs}(\mathrm{G})\);
\(J=\operatorname{sum}(E . \wedge 2) ;\)
end
```

Minimizing the cost:

$$
\begin{aligned}
& \gg[a, b]=\text { fminsearch('costf',10*rand }(1,5)) \\
& \mathrm{a}=\begin{array}{lllll}
36.6716 & 0.8314 & 12.3599 & 2.1860 & 3.1799 \\
\mathrm{~b}= & 13.0720 & & &
\end{array}
\end{aligned}
$$

meaning

$$
G(s)=\left(\frac{36.67}{\left(s^{2}+0.8314 s+12.3599\right)\left(s^{2}+2.1860 s+3.1799\right)}\right)
$$

The gain vs. frequency and pole location looks like:

Summary

Filters are circuits whose gain changes with frequency

Phasors make filter analysis easy

- Assumes sinusoidal inputs
- Requires the use of complex numbers

Filter design is a little harder

- Place poles close to frequencies you want to pass
- Place zeros close to frequencies you want to reject

