Filters in the s-Plane NDSU ECE 376

Lecture #26

Inst: Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

LaPlace Transforms

Circuits with inductors or capacitors are described by differential equaitons

$$V = L\frac{dI}{dt}$$
$$I = C\frac{dV}{dt}$$

LaPlace transforms assume

$$y = e^{st}$$

giving

$$\frac{dy}{dt} = s \ e^{st} = s \ y$$

Differential Equations and Transfer Functions

With the LaPlace assumption, you can turn differential equations into transfer functions

Example:

$$\frac{d^3y}{dt^3} + 7\frac{d^2y}{dt^2} + 9\frac{dy}{dt} + 15y = 10\frac{dx}{dt} + 3x$$

Using LaPlace notation

$$s^{3}Y + 7s^{2}Y + 9sY + 15Y = 10sX + 3X$$

$$Y = \left(\frac{10s+3}{s^3 + 7s^2 + 9s + 15}\right) X$$

G(s) is called the *transfer function*

$$G(s) = \left(\frac{10s+3}{s^3+7s^2+9s+15}\right)$$

Note that this goes both ways:

Example: Find the differential equation relating X and Y

$$Y = \left(\frac{10s + 3}{s^3 + 7s^2 + 9s + 15}\right) X$$

Solution: Cross multiply

$$(s^3 + 7s^2 + 9s + 15)Y = (10s + 3)X$$

Replace each 's' with $\frac{d}{dt}$

$$\frac{d^3y}{dt^3} + 7\frac{d^2y}{dt^2} + 9\frac{dy}{dt} + 15y = 10\frac{dx}{dt} + 3x$$

Analyzing Filtes for Sinusoidal Inputs

G(s) is the gain at all frequencies.

- For a specific frequency, substitute $s \rightarrow j\omega$
- Exprss X in phasor form (real = cosine, imag = -sine)
- Output = Gain * Input

Example: Find y(t):

$$Y = \left(\frac{10s+3}{s^3+7s^2+9s+15}\right)X$$

x(t) = 2 cos (4t) + 3 sin (4t)

Solution: Express X using phasor notation

$$X = 2 - j3$$

$$s = j4$$

$$Y = \left(\frac{10s+3}{s^3+7s^2+9s+15}\right)_{s=j4} X = (-0.138 - j0.372)(2 - j3)$$

$$Y = -1.394 - j0.330$$

$$y(t) = -1.394 \cos(4t) + 0.330 \sin(4t)$$

Example 2: Multiple Inputs

• Use superposition

Example: Find y(t)

$$Y = \left(\frac{10s+3}{s^3+7s^2+9s+15}\right)X$$

$$x(t) = 3\cos(4t) + 5\sin(6t)$$

Solution: Treat this as two separate problems:

 $x_1(t) = 3\cos(4t)$ $x_2(t) = 5\sin(6t)$

$$x_{1}(t) = 3\cos(4t)$$

$$Y = \left(\frac{10s+3}{s^{3}+7s^{2}+9s+15}\right)_{s=j4} (3+j0) = 0.415 - j1.117$$

$$y_{1}(t) = 0.415\cos(4t) + 1.117\sin(4t)$$

$$x_{2}(t) = 5 \sin(6t)$$

$$Y = \left(\frac{10s+3}{s^{3}+7s^{2}+9s+15}\right)_{s=j6} (0-j5) = -0.642 + j0.640$$

$$y_{2}(t) = -0.642\cos(6t) - 0.640\sin(6t)$$

 $y(t) = y_1 + y_2$

Filter Analysis: Bode Plots

Easy:

- Plug in $s = j\omega$
- Plot gain vs. frequency

Example:

$$G(s) = \left(\frac{2s}{s^2 + 2s + 10}\right)$$

Matlab Code:

```
w = [0:0.01:10]';
s = j*w;
G = 2*s ./ (s.^2 + 2*s + 10);
plot(w,abs(G));
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


Filter Design: Poles and Zeros

In general, G(s) will have a numerator and a denominator polynomial

- The zeros are the roots of the numerator polynomial
- The poles are the roots of the denominator polynomial.

$$G(s) = k\left(\frac{z(s)}{p(s)}\right)$$

Graphically, this is

 $G(s) = k \cdot \frac{\Pi(\text{distance from the zeros to } j\omega)}{\Pi(\text{distance from the poles to } j\omega)}$

meaning

- Place zeros near frequencies where you want the gain to be small
- Place poles near frequencies where you want the gain to be large

Types of Filters

Filters are categorized into different types:

Characteristic Example Filter Type Low-frequency gain is large (pass) Low-Pass $\frac{10}{s+10}$ High-frequency gain is small (reject) High-Pass High-frequency gain is large (pass) $\left(\frac{10s}{s+10}\right)$ Low-frequency gain is smalle (reject) **Band-Pass** High-frequency gain is small $\left(\frac{2s}{(s+1+i50)(s+1-i50)}\right)$ Low frequency gain is small Mid-range frequency is large

A filter's order is the number of poles the filter has. In general, the more poles a filter has, the better the filter.

RC Filter:

Closest approximation to an ideal low-pass filter with

- Gain < 1
- No zeros
- Poles can only be real

Butterworth Filter

Closest approximation to an ideal low-pass filter with

- Gain < 1
- No zeros
- Poles can be real or complex

	N=2	N=3	N=4	N=5	N=6
zeros	none	none	none	none	none
poles	$-1 \angle \pm 45^{\circ}$	-1	$-1 \angle \pm 22.5^{0}$	-1	$-1 \angle \pm 15^{0}$
		$-1 \angle \pm 60^0$	$-1 \angle \pm 67.5^{\circ}$	$-1 \angle \pm 36^{\circ}$	$-1 \angle \pm 45^{0}$
				$-1 \angle \pm 72^0$	$-1 \angle \pm 75^{\circ}$

Solution: Pole Locations for Corner = 1 rad/sec

Butterworth Example:

- 5th-Order Butterworth filter
- Corner = 10 rad/sec

Chebychev Filter

Closest approximation to an ideal low-pass filter with

- Gain $< 1 + \varepsilon$
- No zeros
- Poles can be real or complex

Solution: Pole location for $\varepsilon = 0.02$ and corner = 1 rad/sec

	N=2	N=3	N=4	N=5	N=6
zeros	none	none	none	none	none
poles	$-1.60 \angle \pm 50.7^{0}$	-0.85	$-0.72 \angle \pm 38.5^{\circ}$	-0.48	$-0.47 \angle \pm 36.1$
		$-1.21 \angle \pm 69.5^{\circ}$	$-1.11 \angle \pm 77.8^{\circ}$	$-0.76 \angle \pm 59.3^{\circ}$	$-0.81 \angle \pm 69.8$
				$-1.06 \angle \pm 82.0^{\circ}$	$-1.04 \angle \pm 84.4$

Chebychev Example:

- 5th-Order Butterworth filter
- Corner = 10 rad/sec

$$G(s) = \left(\frac{4.8 \cdot 7.6^2 \cdot 10.6^2}{(s+4.8)(s+7.6 \neq \pm 59.3^0)(s+10.6 \neq \pm 82^0)}\right)$$

Filter Design with *fminsearch()*

Another way to design filters is to use the function *fminsearch*

Problem: Find { a,b,c,d,e } so that

$$G(s) = \left(\frac{a}{\left(s^2 + bs + c\right)\left(s^2 + ds + e\right)}\right) \approx \begin{cases} 1 & \omega < 4\\ 0 & otherwise \end{cases}$$

```
function [J] = costf(z)
a = z(1);
b = z(2);
c = z(3);
d = z(4);
e = z(5);
w = [0:0.01:10]';
s = j * w;
Gideal = 1 .* (w < 4);
G = a ./ ((s.^2 + b*s + c) .* (s.^2 + d*s + e));
E = abs(Gideal) - abs(G);
J = sum(E .^{2});
end
```

Minimizing the cost:

>> [a,b] = fminsearch('costf',10*rand(1,5))
a = 36.6716 0.8314 12.3599 2.1860 3.1799
b = 13.0720

meaning

$$G(s) = \left(\frac{36.67}{\left(s^2 + 0.8314s + 12.3599\right)\left(s^2 + 2.1860s + 3.1799\right)}\right)$$

The gain vs. frequency and pole location looks like:

Summary

Filters are circuits whose gain changes with frequency

Phasors make filter analysis easy

- Assumes sinusoidal inputs
- Requires the use of complex numbers

Filter design is a little harder

- Place poles close to frequencies you want to pass
- Place zeros close to frequencies you want to reject