z-Transforms NDSU ECE 376

 Lecture \#27

 Lecture \#27 Inst: Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Introduction:

Anything you can do in software you can do in hardware, and visa versa. In Circuits II and Electronics II, we deisgn filtes in the s-plane. These include

- RC low-pass filters,
- RLC band-pass filters, and
- Active filters

To describe these filters, differential equations are used. This results in transfer functions in 's' where
sY
means
the derivative of $\mathrm{y}(\mathrm{t})$

Digital Filters

With a microprocessor, you

- Samples the error every T seconds
- The sampled signal is sent through an analog to digital (A/D) converter
- A program on the microcontroller computes the output (software), and then
- The output of the microcontroller is sent to a digital to analog (D/A) converter, producing $\mathrm{y}(\mathrm{t})$

Advantages of Digital Filters

- Code that ran yesterday should also run today.
- DC offsetts don't exist in software. Zero plus zero is zero.
- If you want a more complex controller, you just add lines of code.
- If you want to change the controller, you just download a new program.

Problem:

- LaPlace transforms don't work well when describing software

Sample Code

```
while(1) {
    k = k 1; // k = iteration number
    x1 = x0; // x(k-1)
    x0 = A2D_Read(0); // read in x(k) from the A/D
    y1 = y0; // y(k-1)
y0 = y1 + 0.2*(x0 - 0.9*x1);
Wait_10ms();
}
```

This requires a difference equation

$$
y(k)=y(k-1)+0.2(x(k)-0.9 x(k-1))
$$

LaPlace Transforms

Assume

$$
y=e^{s t}
$$

then

$$
\frac{d y}{d t}=s \cdot e^{s t}=s Y
$$

This turns differential equations into transfer functions in 's'

$$
Y=\left(\frac{8 s+3}{s^{2}+7 s+12}\right) X
$$

means

$$
\frac{d^{2} y}{d t^{2}}+7 \frac{d y}{d t}+12 y=8 \frac{d x}{d t}+3 x
$$

z-Transform

Assume a sampling rate T

$$
\begin{aligned}
& t=k T \\
& y(t)=y(k T)=y(k)=z^{k}
\end{aligned}
$$

Then

$$
y(k+1)=z^{k+1}=z \cdot z^{k}=z \cdot y(k)
$$

'zY' means "the next value of Y "
This in turn converts difference equations into algebraic equations in z .

Implementing $\mathbf{K}(\mathbf{z})$ in Software

$$
Y=G(z) X=\left(\frac{a_{2} z^{2}+a_{1} z+a_{0}}{z^{3}+b_{2} z^{2}+b_{1} z+b_{0}}\right) X
$$

i) Cross multiply:

$$
\left(z^{3}+b_{2} z^{2}+b_{1} z+b_{0}\right) Y=\left(a_{2} z^{2}+a_{1} z+a_{0}\right) X
$$

ii) Convert back to the time domain, noting that zY means $\mathrm{y}(\mathrm{k}+1)$:

$$
y(k+3)+b_{2} y(k+2)+b_{1} y(k+1)+b_{0} y(k)=a_{2} x(k+2)+a_{1} x(k+1)+a_{0} x(k)
$$

or

$$
y(k)+b_{2} y(k-1)+b_{1} y(k-2)+b_{0} y(k-3)=a_{2} x(k-1)+a_{1} x(k-2)+a_{0} x(k-3)
$$

iii) Solve for $\mathrm{y}(\mathrm{k})$
$y(k)=-b_{2} y(k-1)-b_{1} y(k-2)-b_{0} y(k-3)+a_{2} x(k-1)+a_{1} x(k-2)+a_{0} x(k-3)$
iv) Write this in code:

```
while(1) {
    x3 = x2; 
y0 = -b2*y1 - b1*y2 - b0*y3 + a2*x1 + a1*x2 + a0*x3;
D2A(y0); // output y(k) to the D/A converter
Wait_10ms();
}
```

Example 2: Implement the following digital filter ($\mathrm{T}=10 \mathrm{~ms}$)

$$
Y=\left(\frac{0.2 z(z-0.9)}{(z-1)(z-0.5)}\right) X
$$

Solution: Multiply it out

$$
Y=\left(\frac{0.2\left(z^{2}-0.9 z\right)}{z^{2}-1.5 z+0.5}\right) X
$$

Cross multiply and solve for the highest power of zY

$$
\begin{aligned}
& \left(z^{2}-1.5 z+0.5\right) Y=0.2\left(z^{2}-0.9 z\right) X \\
& z^{2} Y=1.5 z-0.5 Y+0.2\left(z^{2}-0.9 z\right) X
\end{aligned}
$$

meaning

$$
y(k)=1.5 y(k-1)-0.5 y(k-2)+0.2(x(k)-0.9 x(k-1))
$$

In code, only one line changes

```
while(1) {
    x2 = x1; // x(k-2)
    x1 = x0; // x(k-1)
    x0 = A2D_Read(0); // read in x(k) from the A/D
    y2 = y1; // y(k-2)
    y1 = y0; // y(k-1)
    y0 = -1.5*y1 +0.5*y2 + 0.2*(x0 - 0.9*x1);
    Wait_10ms();
    }
```


Note:

- Filters in the z-domain can be implemented exactly in software. That isn't true in the LaPlace domain.
- To change the filter, you just change one line of code. That's much easier than building a new op-amp filter.
- Complex poles and zeros are not a problem in the z-domain. All you care about are the coefficients in the numerator and denominator polynomials.
- If you have a 3rd-order filter, you need to remember the 3 previous values of the inputs and outputs. A 4th-order filter remembers the 4 previous values.
One other important thing to note:
- In the s-domain, we don't like to have more zeros than poles. More zeros than poles means you're differentiating the input. This tends to create a noise amplifier.
- In the z-domain, you cannot have more zeros than poles. More zeros than poles means you're using future values of the input - which I don't know how to do.

Also also

- You have to have integer powers of s. $s^{1 / 2} Y$ means "the half-derivative of Y". I have no idea what a half-derivative is. $\mathrm{s}^{1 / 2} \mathrm{Y}$ doesn't make sense.
- You have to have integer powers of $\mathrm{z} . \mathrm{z}^{1 / 2} \mathrm{Y}$ means "the value of Y next time you half-call the subroutine." I know how to call a subroutine one time. I know how to call it two times. I don't know how to call a subroutine half a time. $\mathrm{z}^{1 / 2} \mathrm{Y}$ doesn't make sense either.

Find the response of $\mathrm{G}(\mathrm{z})$ for a sinusoidal input

LaPlace assumes

$$
y(t)=e^{s t}
$$

If

$$
t=k T
$$

then

$$
y(k T)=e^{s k T}
$$

or

$$
y(k)=\left(e^{s T}\right)^{k}
$$

This is identical to the assumption behind z-transforms.

$$
z=e^{s T} \quad s \rightarrow j \omega \quad z=e^{j \omega T}
$$

(note: TI calculators need to be in radian mode for this to work.)

Find $\mathrm{y}(\mathrm{t})$ given $\mathrm{G}(\mathrm{s})$:

$$
Y=\left(\frac{20}{(s+1)(s+5)}\right) X
$$

where

$$
x(t)=3 \sin (4 t)
$$

Solution: Evaluate at $\mathrm{s}=\mathrm{j} 4$

$$
Y=\left(\frac{20}{(s+1)(s+5)}\right)_{s=j 4}(0-j 3)=-2.066+j 0.947
$$

meaning

$$
y(t)=-2.066 \cos (4 t)-0.947 \sin (4 t)
$$

Find $\mathrm{y}(\mathrm{t})$ given $\mathrm{G}(\mathrm{z})(\mathrm{T}=10 \mathrm{~ms})$

$$
\begin{aligned}
& Y=\left(\frac{0.02 z}{(z-0.9)(z-0.8)}\right) X \\
& x(t)=3 \sin (4 t)
\end{aligned}
$$

Solution: Evaluate at

$$
\begin{aligned}
& s=j 4 \\
& z=e^{s T}=e^{j 0.04}=1 \angle 2.291^{0} \\
& Y=\left(\frac{0.02 z}{(z-0.9)(z-0.8)}\right)_{z=1 \angle 2.291^{0}}(0-j 3)=-1.423-j 2.366
\end{aligned}
$$

meaning

$$
y(t)=-1.423 \cos (4 t)+2.366 \sin (4 t)
$$

You can verify this in VisSim:

Table of z-transforms

If you want to find the output of a filter $G(s)$ with a step input, you use LaPlace transforms along with a table of LaPlace transforms and partial fraction expansion.
Similarly, if you want to find the output of a filter $G(z)$ with a step input, you use z-transforms along with a table of z-transforms and partial fraction expansion.
i) Delta Function $\delta(k)$. The discrete-time delta function is

$$
\delta(k)=\left\{\begin{array}{cc}
1 & k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

k	0	1	2	3	4	5	6	7
$\operatorname{delta}(\mathrm{k})$	1	0	0	0	0	0	0	0

The z-transform of a delta function is ' 1 ', just like the s-domain.
ii) Unit Step: The unit step is

$$
u(k)=\left\{\begin{array}{cc}
1 & k \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

It's z-transform can be deriveds as follows. The unit step is:

k	0	1	2	3	4	5	6	7
$u(k)$	1	1	1	1	1	1	1	1
$(1 / z)^{*} u(k)$	0	1	1	1	1	1	1	1
Subtract								
$(1-1 / z) u(k)$	1	0	0	0	0	0	0	0

So,

$$
\begin{aligned}
& \left(1-\frac{1}{z}\right) u(k)=\left(\frac{z-1}{z}\right) u(k)=1 \\
& u(k)=\frac{z}{z-1}
\end{aligned}
$$

iii) Decaying Exponential. Let

so

$$
\begin{aligned}
& \left(1-\frac{a}{z}\right) X=\left(\frac{z-a}{z}\right) X=1 \\
& X=\left(\frac{z}{z-a}\right)
\end{aligned}
$$

These let you create a table of z-transforms like we had in the s-domain:

function	$\mathrm{y}(\mathrm{k})$	$\mathrm{Y}(\mathrm{z})$
delta	$\delta(k)$	1
unit step	$u(k)$	$\left(\frac{z}{z-1}\right)$
decaying exponential	$a^{k} u(k)$	$\left.\frac{z}{z-a}\right)$
damped sinewave	$2 b \cdot a^{k} \cdot \cos (k \theta+\phi) \cdot u(k)$	$\left(\frac{(b \angle \phi) z}{z-(a \angle \theta)}\right)+\left(\frac{(b \angle-\phi) z}{z-(a \angle-\theta)}\right)$

Time Response in the z-Domain

Find $y(t)$ assuming $x(t)$ is a unit step:

$$
Y=\left(\frac{0.2 z}{(z-0.9)(z-0.5)}\right) X
$$

i) Replace $\mathrm{X}(\mathrm{z})$ with the z -transform of a step

$$
Y=\left(\frac{0.2 z}{(z-0.9)(z-0.5)}\right)\left(\frac{z}{z-1}\right)
$$

ii) Use partial fractions

$$
Y=\left(\frac{0.2 z}{(z-1)(z-0.9)(z-0.5)}\right) z=\left(\left(\frac{4}{z-1}\right)+\left(\frac{-4.5}{z-0.9}\right)+\left(\frac{0.5}{z-0.5}\right)\right) z
$$

iii) Now apply the table entries

$$
y(k)=4-4.5 \cdot(0.9)^{k}+0.5 \cdot(0.5)^{k} \quad \mathrm{k}>=0
$$

Complex Poles: Find the step response for:

$$
Y=\left(\frac{0.2 z}{\left(z-0.9 \angle 10^{0}\right)\left(z-0.9 \angle-10^{0}\right)}\right) X
$$

i) Replace X with its z -transforrm (a unit step)

$$
Y=\left(\frac{0.2 z}{\left(z-0.9 \angle 10^{0}\right)\left(z-0.9 \angle-10^{0}\right)}\right)\left(\frac{z}{z-1}\right)
$$

ii) Factor our a z and use partial fractions

$$
Y=\left(\left(\frac{5.355}{z-1}\right)+\left(\frac{2.98 \angle 153.97^{0}}{z-0.9 \angle 10^{0}}\right)+\left(\frac{2.98 \angle-153.97^{0}}{z-0.9 \angle-10^{0}}\right)\right) z
$$

iii) Convert back to time using the table of z-transforms

$$
y(k)=5.355+4.859 \cdot(0.9)^{k} \cdot \cos \left(10^{0} \cdot k-153.97^{0}\right) \quad \mathrm{k}>=0
$$

Time Value of Money

You can also solve time-value of money problems using z-transforms.

Assume you borrow $\$ 100,000$ for a house. How much do you have to pay each month to pay off the loan in 10 years?

- Assume 6\% interest per year (0.5% per month).

Solution: Let $x(k)$ be how much money you owe today. The amount you owe next month, $\mathrm{x}(\mathrm{k}+1)$, is

$$
x(k+1)=1.005 x(k)-p+X(0) \cdot \delta(k)
$$

where ' p ' is your monthly payment starting at $\mathrm{k}=1$. (a step delayed by one sample). Converting to the z -domain

$$
\begin{aligned}
& z X=1.005 X-p\left(\frac{z}{z-1}\right)\left(\frac{1}{z}\right)+X(0) \\
& z X=1.005 X-p\left(\frac{1}{z-1}\right)+X(0) \\
& (z-1.005) X=X(0)-p\left(\frac{1}{z-1}\right) \\
& X=\left(\frac{X(0)}{z-1.005}\right)-p\left(\frac{1}{(z-1)(z-1.005)}\right)
\end{aligned}
$$

Using partial fractions

$$
\begin{aligned}
& z X=\left(\frac{z}{z-1.005}\right) X(0)-p z\left(\frac{1}{(z-1)(z-1.005)}\right) \\
& z X=\left(\frac{z}{z-1.005}\right) X(0)+p z\left(\left(\frac{200}{z-1}\right)-\left(\frac{200}{z-1.005}\right)\right)
\end{aligned}
$$

Converting back to the time domain

$$
z x(k)=1.005^{k} X(0)-200 p\left(1.005^{k}-1\right) u(k)
$$

Divide by z (delay one sample)

$$
x(k)=1.005^{k-1} X(0)-200 p\left(1.005^{k-1}-1\right) u(k-1)
$$

After 120 payments (10 years), the balance should be zero

$$
\begin{aligned}
& x(k)=1.005^{k-1} X(0)-200 p\left(1.005^{k-1}-1\right) u(k-1) \\
& x(121)=0=\$ 181,939-200 p(0.8194) \\
& p=\$ 1110.02
\end{aligned}
$$

Your monthly payments are $\$ 1,110.02$ starting at month \#1 and continuing for 120 payments.

If you stretch this out to 30 years ($k=360$ payments), the monthly payment becomes

$$
\begin{aligned}
& x(361)=0=\$ 602,257-200 p(5.0226) \\
& p=\$ 599.55
\end{aligned}
$$

Note: Paying off the loan over a time span 3 times longer

- Reduces the monthly payments by only 46% less, and
- Increases the total amount you'll pay on the loan from $\$ 133,224$ to $\$ 215,838$.

Also also: That's pretty much all a business calculator is: a calculator which does z-transforms where the keys are renamed

- interest rate
- initial loan value, and
- number of payments

