Filters in the z-Plane NDSU ECE 376

Lecture \#28

Inst: Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Filters in the z-Plane

Given $G(s)$, find $G(z)$ so that

- They both have the same step response, or
- They both have the same frequency response.

LaPlace Operator (s)

LaPlace Transforms assume

$$
y(t)=e^{s t}
$$

giving

$$
\frac{d y}{d t}=s \cdot e^{s t}=s y
$$

sY means 'the derivative of $y(t)^{\prime}$

A transfer function, such as

$$
Y=\left(\frac{2 s+3}{s^{2}+2 s+10}\right) X
$$

is equivalent to

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+10 y=2 \frac{d x}{d t}+3 x
$$

z-Operator

z-Transforms assume

$$
y(k)=z^{k}
$$

giving
$y(k+1)=z^{k+1}=z \cdot z^{k}=z y(k)$
$z Y$ means 'the next value of $y(k)$

A transfer function, such as

$$
Y=\left(\frac{2 z+3}{z^{2}+2 z+10}\right) X
$$

means

$$
y(k+2)+2 y(k+1)+10 y(k)=2 x(k+1)+3 x(k)
$$

s to z-Plane Relationship

Assume

$$
t=k T
$$

where

- k is the sample number
- T is the sampling time (one sample every T seconds)

Substituting

$$
y(k T)=e^{s k T}=\left(e^{s T}\right)^{k}=(z)^{k}
$$

$$
z=e^{s T}
$$

Filter Analysis in the s-Plane

Find $y(t)$

$$
\begin{aligned}
& Y=\left(\frac{2}{s+3}\right) X \\
& x(t)=4 \cos (5 t)+6 \sin (5 t)
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& Y=\left(\frac{2}{s+3}\right)_{s=j 5}(4-j 6) \\
& Y=-1.059-j 2.235 \\
& y(t)=-1.059 \cos (5 t)+2.235 \sin (5 t)
\end{aligned}
$$

s-Plane: Sine-wave input produces a sine-wave output

Filter Analysis in the z-Plane

$$
z=e^{s T}=e^{j \omega T}
$$

Find $y(t)$. Assume $T=0.01$ second

$$
\begin{aligned}
& Y=\left(\frac{0.2}{z-0.9}\right) X \\
& x(t)=4 \cos (5 t)+6 \sin (5 t)
\end{aligned}
$$

Solution: Determine the gain at $z=e^{j 5 T}$

$$
\begin{aligned}
& Y=\left(\frac{0.2}{z-0.9}\right)_{z=e^{i 0.05}}(4-j 6) \\
& Y=-2.575-j 1.548 \\
& y(t)=-2.575 \cos (5 t)+1.548 \sin (5 t)
\end{aligned}
$$

z-Plane: Sine wave input produces a sine-wave output

Converting $\mathbf{G}(\mathbf{s})$ to $\mathbf{G}(\mathbf{z})$

- Poles convert as $z=e^{s T}$
- Zeros convert as $z=e^{s T}$
- Add a gain to match the gain at one frequency (typically DC)

Example 1: Convert to the z-plane. Assume T = 0.01

$$
G(s)=\left(\frac{30}{(s+2)(s+10)}\right)
$$

Solution: Convert the poles to the z-plane

$$
\begin{aligned}
& \mathrm{s}=-2 \\
& \mathrm{~s}=-10
\end{aligned}
$$

$$
z=e^{-2 T}=0.9802
$$

$$
z=e^{-10 T}=0.9048
$$

so

$$
G(z)=\left(\frac{k}{(z-0.9802)(z-0.9048)}\right)
$$

To find k , match the gain at DC

$$
\begin{aligned}
& \left(\frac{30}{(s+2)(s+10)}\right)_{s=0}=\left(\frac{k}{(z-0.9802)(z-0.9048)}\right)_{z=1}=1.5 \\
& k=0.002827 \\
& \left(\frac{30}{(s+2)(s+10)}\right) \approx\left(\frac{0.002827}{(z-0.9802)(z-0.9048)}\right)
\end{aligned}
$$

$\mathrm{G}(\mathrm{s})$ and $\mathrm{G}(\mathrm{z})$ have the same step response

$G(\mathrm{~s})$ and $G(\mathrm{z})$ have the same frequency response

Implementing G(z)

Write a program to implement

$$
Y=\left(\frac{0.2(z-0.9)}{z^{3}-1.3 z^{2}+1.6 z+0.6}\right) X
$$

Cross multiply

$$
\left(z^{3}-1.3 z^{2}+1.6 z+0.6\right) Y=0.2(z-0.9) X
$$

Write the difference equation

$$
\begin{gathered}
y(k+3)-1.3 y(k+2)+1.6 y(k+1)+0.6 y(k)= \\
0.2(x(k+1)-0.9 x(k))
\end{gathered}
$$

Solve for the highest value of $\mathrm{y}(\mathrm{k}+2)$

$$
\begin{gathered}
y(k+3)=1.3 y(k+2)-1.6 y(k+1)-0.6 y(k)+ \\
0.2(x(k+1)-0.9 x(k))
\end{gathered}
$$

Time shift (change of variable: $\mathrm{k}+3=\mathrm{k}$ ')

$$
\begin{aligned}
y\left(k^{\prime}\right) & =1.3 y\left(k^{\prime}-1\right)-1.6 y\left(k^{\prime}-2\right)-0.6 y\left(k^{\prime}-3\right) \\
& +0.2\left(x\left(k^{\prime}-2\right)-0.9 x\left(k^{\prime}-3\right)\right)
\end{aligned}
$$

This is essentially the program

$$
Y=\left(\frac{0.2(z-0.9)}{z^{3}-1.3 z^{2}+1.6 z+0.6}\right) X
$$

while(1) \{

$$
x 3=x 2 ;
$$

$$
x 2=x 1 ;
$$

$$
x 1=x 0 ;
$$

$$
x 0=A 2 D _R e a d(0) ;
$$

$$
y^{3}=y^{2} ;
$$

$$
y^{2}=y 1 ;
$$

$$
\mathrm{y} 1=\mathrm{y} 0 ;
$$

$$
y^{0}=1.3 * y^{1}-1.6 * y^{2}-0.6 * y^{3}+0.2 *(x 2-0.9 * x 3) ;
$$

D2A(y0);
Wait_T();
\}

Note

- If you want to change the filter, you just change one line of code
- If you want complex poles or zeros, just choose coefficients that have complex roots

Example 2: Design a digital low-pass filter

$$
G(j \omega) \approx \begin{cases}1 & \omega<10 \\ 0 & \omega>10\end{cases}
$$

From lecture \#26, a 5th-order Chebychev filter is

$$
G(s)=\left(\frac{4.8 \cdot 7.6^{2} \cdot 10.6^{2}}{(s+4.8)\left(s+7.6 \angle \pm 59.3^{0}\right)\left(s+10.6 \angle \pm 82^{0}\right)}\right)
$$

Convert G(s) to $G(z)$

$$
G(s)=\left(\frac{4 \cdot 8 \cdot 7 \cdot 6^{2} \cdot 10.6^{2}}{(s+4.8)\left(s+7.6 \angle \pm 59.3^{0}\right)\left(s+10.6 \angle \pm 82^{0}\right)}\right)
$$

Assume T $=10 \mathrm{~ms}$

Convert using $z=e^{s T}$

$$
\begin{array}{ll}
s=-4.8 & z=0.9531 \\
s=-7.6 \angle \pm 59.3^{0} & z=0.9599 \pm j 0.0626 \\
s=-10.6 \angle \pm 82^{0} & z=0.9799 \pm j 0.1032
\end{array}
$$

so

$$
G(z)=\left(\frac{k}{(z-0.9531)(z-0.9599 \pm j 0.0626)(z-0.9799 \pm j 0.1032)}\right)
$$

Pick ' k ' s that the DC gain is 1.000

$$
\begin{aligned}
& \left(\frac{k}{(z-0.9531)(z-0.9599 \pm j 0.0626)(z-0.9799 \pm j 0.1032)}\right)_{z=1}=1 \\
& k=2.8797 \cdot 10^{-6}
\end{aligned}
$$

so

$$
G(z)=\left(\frac{2.8797 \cdot 10^{-6}}{(z-0.9531)(z-0.9599 \pm j 0.0626)(z-0.9799 \pm j 0.1032)}\right)
$$

In Matlab:

```
s1 \(=-4.8 ;\)
s2 \(=-7.6^{*} \exp (j * 59.3 * p i / 180)\);
s3 \(=\) conj(s2);
s4 \(=-10.6 * \exp (j * 82 * p i / 180)\);
s5 = conj(s4);
\(\mathrm{ks}=\mathrm{abs}(\operatorname{prod}([s 1, s 2, s 3, s 4, s 5]))\);
```

$$
\mathrm{T}=0.01 ;
$$

$$
z 1=\exp (s 1 * T) ;
$$

$$
z 2=\exp (s 2 * T) ;
$$

$$
z 3=\exp (s 3 * T) ;
$$

$$
z 4=\exp (s 4 * T) ;
$$

$$
\mathrm{z} 5=\exp (\mathrm{s} 5 * \mathrm{~T})
$$

$$
\mathrm{kz}=\operatorname{abs}(\operatorname{prod}([z 1-1, z 2-1, z 3-1, z 4-1, z 5-1])) ;
$$

```
\(\mathrm{w}=[0: 0.01: 30]\) ';
\(\mathrm{s}=\mathrm{j} * \mathrm{w}\);
\(\mathrm{z}=\exp \left(\mathrm{s}^{*} \mathrm{~T}\right)\);
Gs = ks ./ ( (s-s1).*(s-s2).*(s-s3).*(s-s4).*(s-s5) );
\(\mathrm{Gz}=\mathrm{kz} . /(\mathrm{z}-\mathrm{z} 1) . *(\mathrm{z}-\mathrm{z} 2) . *(\mathrm{z}-\mathrm{z} 3) . *(\mathrm{z}-\mathrm{z} 4) . *(\mathrm{z}-\mathrm{z} 5)\) );
plot(w, abs(Gs),'b',w, abs(Gz),'r');
```


Summary:

Converting an analog filter, $G(s)$, to a digital filter, $G(z)$, is fairly easy

- Zeros convert as $z=e^{s T}$
- Poles convert at $z=e^{s T}$
- Pick 'k' to match the DC gain

Once you have the digital filter, it's fairly straight forward to write the corresponding code

- 1st and 2nd-order filters are easier to code and have better numerical properties
- Split up the 5 th order filter into cascaded 1 st \& 2nd order filters

$$
G(z)=\left(\frac{0.0469}{z-0.9531}\right)\left(\frac{0.0056}{z-0.9599 \pm j 0.0626}\right)\left(\frac{0.0111}{z-0.9799 \pm j 0.1032}\right)
$$

