ECE 461/661 Handout \#10

LaPlace Transforms

1) Determine the differential equation relating X and Y

$$
Y=\left(\frac{20 s+50}{s^{3}+8 s^{2}+20 s+40}\right) X
$$

2) Determine $y(t)$

$$
\begin{aligned}
& Y=\left(\frac{10(s+5)}{(s+1)(s+4)}\right) X \\
& x(t)=2 \cos (3 t)+4 \sin (3 t)
\end{aligned}
$$

3) Determine the step response of the following system

$$
Y=\left(\frac{10(s+5)}{(s+1)(s+4)}\right) X
$$

4) Determine the step response of the following system

$$
Y=\left(\frac{10(s+5)}{(s+1)(s+2+j 4)(s+2-j 4)}\right) X
$$

1) Determine the differential equation relating X and Y

$$
Y=\left(\frac{20 s+50}{s^{3}+8 s^{2}+20 s+40}\right) X
$$

Cross multiply

$$
\left(s^{3}+8 s^{2}+20 s+40\right) Y=(20 s+50) X
$$

meaning

$$
y^{\prime \prime \prime}+8 y^{\prime \prime}+20 y^{\prime}+40 y=20 x^{\prime}+50 x
$$

2) Determine $y(t)$

$$
\begin{aligned}
& Y=\left(\frac{10(s+5)}{(s+1)(s+4)}\right) X \\
& x(t)=2 \cos (3 t)+4 \sin (3 t)
\end{aligned}
$$

Solution: This is actually a phasor problem ($\mathrm{x}(\mathrm{t})$ was on for infinite time)

$$
\begin{array}{ll}
\text {. } x(t)=2 \cos (3 t)+4 \sin (3 t) & \text { phasors: }-\infty<t<\infty \\
\text { - } x(t)=(2 \cos (3 t)+4 \sin (3 t)) u(t) & \text { LaPlace } t>0
\end{array}
$$

$G(s)$ tells you the gain everywhere.

$$
Y=\left(\frac{10(s+5)}{(s+1)(s+4)}\right) X
$$

All we care about is the gain at $\mathrm{s}=\mathrm{j} 3$

$$
\begin{aligned}
& s=j 3 \\
& X=2-j 4
\end{aligned}
$$

$($ real $=\operatorname{cosine},-$ imag $=$ sine $)$

$$
\begin{aligned}
& Y=\left(\frac{10(s+5)}{(s+1)(s+4)}\right)_{s=j 3} \cdot(2-j 4) \\
& Y=-12.8-j 10.4
\end{aligned}
$$

meaning

$$
y(t)=-12.8 \cos (3 t)+10.4 \sin (3 t)
$$

3) Determine the step response of the following system

$$
\begin{aligned}
& Y=\left(\frac{10(s+5)}{(s+1)(s+4)}\right) X \\
& Y=\left(\frac{10(s+5)}{(s+1)(s+4)}\right)\left(\frac{1}{s}\right)
\end{aligned}
$$

Use partial fraction

$$
\begin{aligned}
& Y=\left(\frac{A}{s}\right)+\left(\frac{B}{s+1}\right)+\left(\frac{C}{s+4}\right) \\
& A=\left(\frac{10(s+5)}{(s+1)(s+4)}\right)_{s=0}=12.5 \\
& B=\left(\frac{10(s+5)}{s(s+4)}\right)_{s=-1}=-13.333 \\
& C=\left(\frac{10(s+5)}{s(s+1)}\right)_{s=-4}=0.8333 \\
& Y=\left(\frac{12.5}{s}\right)+\left(\frac{-13.333}{s+1}\right)+\left(\frac{0.8333}{s+4}\right)
\end{aligned}
$$

Take the inverse LaPlace transform

$$
y(t)=12.5-13.3333 e^{-t}+0.8333 e^{-4 t} \quad \text { for } t>0
$$

4) Determine the step response of the following system

$$
\begin{aligned}
& Y=\left(\frac{10(s+5)}{(s+1)(s+2+j 4)(s+2-j 4)}\right) X \\
& Y=\left(\frac{10(s+5)}{(s+1)(s+2+j 4)(s+2-j 4)}\right)\left(\frac{1}{s}\right)
\end{aligned}
$$

Use partial fractions

$$
\begin{aligned}
& Y=\left(\frac{A}{s}\right)+\left(\frac{B}{s+1}\right)+\left(\frac{C}{s+2+j 4}\right)+\left(\frac{D}{s+2-j 4}\right) \\
& A=\left(\frac{10(s+5)}{(s+1)(s+2+j)(s+2-j 4)}\right)_{s=0}=2.5 \\
& B=\left(\frac{10(s+5)}{s(s+2+j)(s+2-j 4)}\right)_{s=-1}=-2.3529 \\
& C=\left(\frac{10(s+5)}{s(s+1)(s+2-j 4)}\right)_{s=-2-j 4}=-0.0735-j 0.3309 \\
& D=\left(\frac{10(s+5)}{s(s+1)(s+2+j 4)}\right)_{s=-2+j 4}=-0.0735+j 0.3309
\end{aligned}
$$

meaning

$$
\begin{aligned}
& Y=\left(\frac{2.5}{s}\right)+\left(\frac{-2.3529}{s+1}\right)+\left(\frac{-0.0735-j 0.3309}{s+2+j 4}\right)+\left(\frac{-0.0735+j 0.3309}{s+2-j 4}\right) \\
& Y=\left(\frac{2.5}{s}\right)+\left(\frac{-2.3529}{s+1}\right)+\left(\frac{0.3390 \angle-102^{0}}{s+2+j 4}\right)+\left(\frac{0.3390 \angle 102^{0}}{s+2-j 4}\right)
\end{aligned}
$$

meaning

$$
y(t)=2.5-2.3929 e^{-t}+0.6779 e^{-2 t} \cos \left(4 t+102^{0}\right) \quad \text { for } t>0
$$

