ECE 461/661 Handout \#22

Gain Compensation
The root locus for $\mathrm{G}(\mathrm{s})$ is given below

$$
G(s)=\left(\frac{200}{(s+0.3)(s+2)(s+5)(s+10)}\right)
$$

Determine the gain, k , that results in 20% overshoot in the step response

Closed-Loop dominant pole	k	Resulting Kp

Solution

$$
G(s)=\left(\frac{200}{(s+0.3)(s+2)(s+5)(s+10)}\right)
$$

Closed-Loop dominant pole	k	Resulting Kp
$\mathbf{S} \mathbf{= \mathbf { - 0 . 7 0 3 } + \mathbf { j 1 . 4 0 6 }}$	$\mathbf{0 . 5 9 5}$	$\mathbf{3 . 6 9 3}$
$\left(\frac{200}{(s+0.3)(s+2)(s+5)(s+10)}\right)_{s=-0.703+j 1.406}=1.682 \angle 180^{0}$		
$k=\frac{1}{1.682}=0.595$		
$K_{p}=(G K)_{s=0}=\left(\frac{200 k}{(s+0.3)(s+2)(s+5)(s+10)}\right)_{s=0}=3.693$		

