ECE 461/661 Handout \#23

Lead Compensation
Design a lead compensator for the following system

$$
G(s)=\left(\frac{200}{(s+0.3)(s+2)(s+5)(s+10)}\right)
$$

so that the damping ratio is 0.707 (45 degrees)

Solution

Design a lead compensator for the following system

$$
G(s)=\left(\frac{200}{(s+0.3)(s+2)(s+5)(s+10)}\right)
$$

so that the damping ratio is 0.707 (45 degrees)
Keep the pole at $\mathrm{s}=-0.3$. That helps to reduce the steady-state error. Cancel the next slowest pole. Let

$$
\begin{aligned}
& K(s)=k\left(\frac{s+2}{s+20}\right) \\
& G K=\left(\frac{200}{(s+0.3)(s+5)(s+10)(s+20)}\right)
\end{aligned}
$$

Option \#1: Draw the root locus and find the spot where thedamping ratio is 0.707
Option \#2: Find the spot along the 0.707 (45 degrees) damping line where the angle of GK is 180 degrees

$$
\begin{aligned}
& s=-1.878+j 1.878 \\
& \left(\frac{200}{(s+0.3)(s+5)(s+10)(s+20)}\right)_{s=-1.878+j 1.878}=0.1474 \angle 180^{0} \\
& k=\frac{1}{0.1474}=6.7864 \\
& K(s)=6.7864\left(\frac{s+2}{s+20}\right)
\end{aligned}
$$

