ECE 461/661 Handout \#24

Design a PID compensator for the following system

$$
G(s)=\left(\frac{200}{(s+0.3)(s+2)(s+5)(s+10)}\right)
$$

so that the damping ratio is 0.707 (45 degrees)

Solution

Handout for Lecture \#24 for ECE 461/661 Controls Systems
Design a PID compensator for the following system

$$
G(s)=\left(\frac{200}{(s+0.3)(s+2)(s+5)(s+10)}\right)
$$

so that the damping ratio is 0.707 (45 degrees)

PID means

- Add a pole at $\mathrm{s}=0$ (I)
- Add two zeros wherever you like
- Add a gain, k , to meet the requirements

Pick the zeros to cancel the two slowest poles

$$
\begin{aligned}
& K(s)=k\left(\frac{(s+0.3)(s+2)}{s}\right) \\
& G K=\left(\frac{200 k}{s(s+5)(s+10)}\right)
\end{aligned}
$$

Option 1: Sketch the root locus. Find the spot on the root locus where the damping ratio is 0.707

Option 2: Search along the 0.707 damping line until the angles of GK(s) add up to 180 degrees

$$
\begin{aligned}
& s=-1.9098+j 1.9098 \\
& \left(\frac{200 k}{s(s+5)(s+10)}\right)_{s=-1.9098+j 1.9098}=2.4522 \angle 180^{0} \\
& k=\frac{1}{2.4522}=0.4078 \\
& K(s)=0.4078\left(\frac{(s+0.3)(s+2)}{s}\right)
\end{aligned}
$$

