ECE 461 Handout \#26

Meeting Design Specs
Find R and C to implement $\mathrm{K}(\mathrm{s})$

$$
K(s)=\left(\frac{20(s+2)(s+5)}{s(s+10)}\right)
$$

Solution:

There are multiple solutions. One is to rewrite $\mathrm{K}(\mathrm{s})$ as a lead * PID

$$
\begin{aligned}
& K(s)=\left(\frac{20(s+2)(s+5)}{s(s+10)}\right) \\
& K(s)=\left(\frac{5(s+2)}{(s+10)}\right)\left(\frac{4(s+5)}{s}\right)
\end{aligned}
$$

Lead (blue): $\left(\frac{5(s+2)}{(s+10)}\right)$
PI: $\left(\frac{4(s+5)}{s}\right)$
Let R3 $=1 \mathrm{M}$
As s goes to infinity, the capacitor is a short

$$
\left(\frac{5(s+2)}{(s+10)}\right)_{s \rightarrow \infty}=5
$$

As s goes to zero, the gain is 1.00

$$
\mathrm{R} 1+\mathrm{R} 2=\mathrm{R} 3
$$

or, the pole is 5 x the zero
Let R2 $=1 \mathrm{M}$
As s goes to infinity, the C is a short

$$
\left(\frac{4(s+5)}{s}\right)_{s \rightarrow \infty}=4
$$

$$
\mathrm{R} 1=200 \mathrm{k}(\mathrm{R} 3 / 5)
$$

$\mathrm{R} 2=4 * \mathrm{R} 1$
$\mathrm{R} 1=250 \mathrm{k}$
The zero is at -5

$$
\left(\frac{1}{R_{2} C}\right)=5
$$

$$
\mathrm{R} 2+\mathrm{R} 1=5 * \mathrm{R} 1
$$

The zero is at $\mathrm{s}=-2$

$$
\left(\frac{1}{R_{2} C}\right)=2
$$

