ECE 461/661: Handout \#29

z-Transform

1) Determine the difference equation that relates X and Y

$$
Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right) X
$$

2) Assume $x(k)=u(k)$ (unit step). Find $y(k)$

$$
Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right) X
$$

Solution

1) Determine the difference equation that relates X and Y

$$
Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right) X
$$

Multiply out and cross multiply

$$
\begin{aligned}
& (z-0.8)(z-0.6) Y=(02 z) X \\
& \left(z^{2}-1.4 z+0.48\right) Y=(0.2 z) X
\end{aligned}
$$

zY means 'the next value of y^{\prime}

$$
y(k+2)-1.4 y(k+1)+0.48 y(k)=0.2 x(k+1)
$$

or with a change of variable (shift time by 2)

$$
y(k)-1.4 y(k-1)+0.48 y(k-2)=0.2 x(k-1)
$$

Either answer is correct
2) Assume $x(k)=u(k)$ (unit step). Find $y(k)$

$$
Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right) X
$$

Use the z-transform for a step

$$
Y=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right)\left(\frac{z}{z-1}\right)
$$

Pull out a z in the numerator (we'll need this later)

$$
Y=\left(\frac{0.2 z}{(z-1)(z-0.8)(z-0.6)}\right) z
$$

Do partial fraction expansion

$$
\begin{aligned}
& Y=\left(\left(\frac{2.5}{z-1}\right)+\left(\frac{-4}{z-0.8}\right)+\left(\frac{1.5}{z-0.6}\right)\right) z \\
& Y=\left(\frac{2.5 z}{z-1}\right)+\left(\frac{-4 z}{z-0.8}\right)+\left(\frac{1.5 z}{z-0.6}\right)
\end{aligned}
$$

Take the inverse-z transform

$$
y(k)=\left(2.5-4(0.8)^{k}+1.5(0.6)^{k}\right) u(k)
$$

