ECE 461/661: Handout \#30

s to z conversions
Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.1$ seconds

$$
G(s)=\left(\frac{20}{(s+2)(s+5)}\right)
$$

Determine the continuous-time equivalent of $\mathrm{G}(\mathrm{z})$. Assume $\mathrm{T}=0.1$ second

$$
G(z)=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right)
$$

Solution

Determine the discrete-time equivalent of $\mathrm{G}(\mathrm{s})$. Assume $\mathrm{T}=0.1$ seconds

$$
G(s)=\left(\frac{20}{(s+2)(s+5)}\right)
$$

The conversion from the s to z plane is

$$
\begin{aligned}
& z=e^{s T} \\
\mathrm{~s}=-2 & \\
z & =e^{(-2)(0.1)}=e^{-0.2}=0.8187
\end{aligned}
$$

$s=-5$

$$
z=e^{(-5)(0.1)}=e^{-0.5}=0.6065
$$

so

$$
G(z)=\left(\frac{k}{(z-0.8187)(z-0.6065)}\right)
$$

To find k , match the DC gain

$$
\begin{aligned}
& \left(\frac{20}{(s+2)(s+5)}\right)_{s=0}=2 \\
& \left(\frac{k}{(z-0.8187)(z-0.6065)}\right)_{z=1}=2 \\
& k=0.1426
\end{aligned}
$$

giving

$$
G(z)=\left(\frac{0.1426}{(z-0.8187)(z-0.6065)}\right)
$$

Note: this has a little too much delay (check the phast at $\mathrm{s}=\mathrm{j} 1$). A slightly more accurate model is

$$
G(z)=\left(\frac{0.1426 z}{(z-0.8187)(z-0.6065)}\right)
$$

2) Determine the continuous-time equivalent of $G(z)$. Assume $T=0.1$ second

$$
G(z)=\left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right)
$$

The conversion from the s to z plane is

$$
\begin{aligned}
& z=e^{s T} \\
& s=\frac{1}{T} \ln (z)
\end{aligned}
$$

$\mathrm{z}=0.8$

$$
s=\left(\frac{1}{0.1}\right) \ln (0.8)=-2.23
$$

$\mathrm{z}=0.6$

$$
s=\left(\frac{1}{0.1}\right) \ln (0.6)=-5.11
$$

$\mathrm{z}=0$

$$
s=\left(\frac{1}{0.1}\right) \ln (0)=-\infty \quad \text { ignore }
$$

So

$$
G(s) \approx\left(\frac{k}{(s+2.23)(s+5.11)}\right)
$$

To find k , match the DC gain

$$
\begin{aligned}
& \left(\frac{0.2 z}{(z-0.8)(z-0.6)}\right)_{z=1}=2.50 \\
& \left(\frac{k}{(s+2.23)(s+5.11)}\right)_{s=0}=2.50 \\
& k=28.49
\end{aligned}
$$

giving

$$
G(s) \approx\left(\frac{28.49}{(s+2.23)(s+5.11)}\right)
$$

