ECE 461 - Homework \#10

z-Transform, Converting G(s) to G(z). Due Monday, November 16th

1a) What is the difference equation the following transfer function represents?

$$
Y=\left(\frac{0.01\left(z^{2}+1.3 z+0.4\right)}{z^{3}-3.2 z^{2}+1.7 z-0.62}\right) X
$$

1b) Write a program to implement this filter.

2a) What is the difference equation the following transfer function represents?

$$
Y=\left(\frac{0.03(z+1)(z+0.8)(z+0.6)}{z(z-0.9)(z-0.4)(z-0.2)}\right) X
$$

2b) Write a program to implement this filter.

Problem 3-6) Assume a sampling rate of 100 ms .

- Determine a filter $G(z)$ which has approximately the same step response as $G(s)$
- Plot the step response of $\mathrm{G}(\mathrm{z})$ and $\mathrm{G}(\mathrm{s})$ in VisSim (or similar program) to check your answer.

3)

$$
G(s)=\left(\frac{30}{(s+2)(s+5)}\right)
$$

4) $\quad G(s)=\left(\frac{600}{\left(s^{2}+2 s+15\right)(s+20)}\right)$
5) $\quad G(s)=\left(\frac{625}{(s+1.31)(s+5.71)(s+12.45)(s+18.37)}\right) \quad$ (heat equation from HW 5)
6) $\quad G(s)=\left(\frac{2.5(s+0.25 \pm j 3.86)}{(s \pm j 4.319)(s \pm j 1.157)(s+0.25 \pm j 3.86)}\right) \quad$ (3-mass system from HW 5)
