

ECE 461 - Homework #12

Compensator Design in the Frequency Domain. Due Wednesday, December 9th

1) Find the transfer function for a system with the following gain vs. frequency

2) Find the transfer function for a system with the following gain vs. frequency

3) Determine the corresponding parameters

Dominant Pole	Damping Ratio	Resonance Mm	Phase Margin	0dB Gain Freq
-3 + j9				
	0.3			5 rad/sec
		+7dB		10 rad/sec
			30 degrees	15 rad/sec

- 4) Determine the transfer function for a 10-stage RC filter with
 - R = 1/10 Ohm
 - C = 1/10 F
- 5) Determine a 3rd-order model which has approximately the same response as the 10th-order system of problem 4
- 6) Design a gain compensator for the 3rd-order system which results in a phase margin of 30 degrees
- 7) Design a PI compensator for the 3rd-order system which results in
 - No error for a step input, and
 - A phase margin of 30 degrees
- 8) Design a compensator for the 3rd-order system which results in
 - No error for a step input,
 - A phase margin of 30 degrees, and
 - A 0dB gain frequency of 2 rad/sec

ECE 661:

- 9) Test your controller in problem #8 on
 - the 4th-order system and
 - the 10th-order system

using a MATLAB or VisSim simulation