ECE 461 - Solution to Homework Set \#4

LaPlace Transforms, 1st and 2nd Order Approximations, Block Diagrams. - Due Monday, September 28th

1) For the following system

$$
Y=\left(\frac{100}{(s+2)(s+5)(s+20)}\right) U
$$

1a) Find a 1st order approximation which has almost the same step response
Dominant pole: $\quad s=-2$
DC Gain: 0.5

$$
\begin{aligned}
& Y=\left(\frac{1}{s+2}\right)\left(\frac{5}{s+5}\right)\left(\frac{20}{s+20}\right) U \\
& Y \approx\left(\frac{1}{s+2}\right) U
\end{aligned}
$$

1b) Plot the step response of the 3rd-order system and its 1st-order approximation.

2) For the following system

$$
Y=\left(\frac{1000}{(s+1+j 4)(s+1-j 4)(s+30)(s+50)}\right) U
$$

2a) Find a 2nd order approximation which has almost the same step response
Dominant Pole: $\quad s=-1+j 4,-1-j 4$
DC Gain: 0.03921

$$
\begin{aligned}
& Y=\left(\frac{0.6666}{(s+1+j 4)(s+1-j 4)}\right)\left(\frac{30}{s+30}\right)\left(\frac{50}{s+50}\right) U \\
& Y \approx\left(\frac{0.6666}{(s+1+j 4)(s+1-j 4)}\right) U
\end{aligned}
$$

2b) Plot the step response of the 4th-order system and its 2nd-order approximation.

3) Find the transfer function for a system with the following step response.

This behaves like a 1st order system (no oscillation), so

$$
G(s) \approx \frac{a}{s+b}
$$

You need to get two pieces of information from this graph:

1) DC gain $=1.666$

$$
\left(\frac{a}{s+b}\right)_{s=0}=1.666
$$

2) 2% settling time $=7$ seconds (approx)

$$
\frac{4}{b}=7
$$

Resulting in

$$
G(s) \approx\left(\frac{0.952}{s+0.571}\right)
$$

4) Find the transfer function for a system with the following step response.

This behaves like a 2nd-order system (oscillation). You need to pull three pieces of information from this graph.

1) $\quad \mathrm{DC}$ gain $=1.666$
2) Frequency of oscillation $=\left(\frac{4 \text { cycles }}{4 \text { seconds }}\right)=1 \mathrm{~Hz}$

$$
\omega_{d}=2 \pi f=6.28 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

3) 2% Settling time $=5$ seconds
$\frac{4}{\sigma}=5$

Resulting in

$$
G(s) \approx\left(\frac{66.77}{(s+0.8+j 6.28)(s+0.8-j 6.28)}\right)
$$

or

$$
G(s) \approx\left(\frac{66.77}{s^{2}+1.6 s+40.07}\right)
$$

5) For the following block diagram, determine the transfer function from X to Y

Shortcut:

$$
\begin{aligned}
& G(s)=\left(\frac{\text { gain from } \mathrm{X} \text { to } \mathrm{Y}}{1+\text { loop gains }}\right) \\
& Y=\left(\frac{A B C+B C D}{1+A B E}\right) X
\end{aligned}
$$

Long Way:

Add a dummy variable at the output of each summing junction.
Write N equations

$$
\begin{aligned}
& \mathrm{M}=\mathrm{X}-\mathrm{EBN} \\
& \mathrm{~N}=\mathrm{AM}+\mathrm{DX} \\
& \mathrm{Y}=\mathrm{CBN}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \mathrm{N}=\mathrm{A}(\mathrm{X}-\mathrm{EBN})+\mathrm{DX} \\
& (1+A B E) N=(A+D) X \\
& N=\frac{(A+D)}{(1+A B E)} X \\
& Y=C B N=\left(\frac{C B(A+D)}{(1+A B E)}\right) X \\
& Y=\left(\frac{A B C+B C D}{1+A B E}\right) X
\end{aligned}
$$

which is what we got before...
6) For the following block diagram, determine the transfer function from X to Y

Shortcut:

$$
\begin{aligned}
& G(s)=\left(\frac{\text { gain from } \mathrm{X} \text { to } \mathrm{Y}}{1+\text { loop gains }}\right) \\
& Y=\left(\frac{A B C}{1+A B E+B C D}\right) X
\end{aligned}
$$

Long Version: Add a dummy variable at the output of each summing junction. Write N equations

$$
\begin{aligned}
& \mathrm{M}=\mathrm{X}-\mathrm{EBN} \\
& \mathrm{~N}=\mathrm{AM}-\mathrm{DCBN} \\
& \mathrm{Y}=\mathrm{CBN}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \mathrm{AM}=\mathrm{AX}-\mathrm{AEBN} \\
& \mathrm{~N}=(\mathrm{AX}-\mathrm{AEBN})-\mathrm{DCBN} \\
& (1+A B E+B C D) N=A X \\
& N=\left(\frac{A}{1+A B E+B C D}\right) X \\
& Y=C B N \\
& Y=\left(\frac{A B C}{1+A B E+B C D}\right) X
\end{aligned}
$$

