## ECE 461 - Homework Set \#7

Root Locus an dGain Compensation - Due Monday, October 19th
Problem 1-4)

$$
G(s)=\left(\frac{100}{(s+1)(s+4)(s+8)(s+9)}\right)
$$

1) Sketch the root locus of $G(s)$ including real axis loci, asymptotes, and jw rossing.

Real Axis Loci: $\quad(-1,-4),(-8,-9)$
Asymptotes: $\quad$ four @ $\pm 45^{\circ}, \pm 135^{0}$
Interesect $=-5.5$
jw crossing: j4.4107
Breakaway Points: -2.1611, -8.5438

2) Determine the feedback gain, k , which results in $20 \%$ overshoot for a step input. Search along the 0.4554 damping line until the angles add up to 180 degrees

ans:

$$
s=-1.2956+j 2.5911
$$

At any point on the root locus

$$
\mathrm{GK}=-1
$$

At this point

$$
\left(\frac{100}{(s+1)(s+4)(s+8)(s+9)}\right)_{s=-1.2956+j 2.5911}=0.1752 \angle 180^{0}
$$

meaning

$$
k=\frac{1}{0.1752}=5.7068
$$

3) For this value of $k$, determine the closed-loop system's

Closed-loop dominant poles

$$
s=-1.2956+j 2.5911
$$

Steady-state error for a step input

$$
\begin{aligned}
& K_{p}=(G \cdot k)_{s=0}=\left(\frac{100 k}{(s+1)(s+4)(s+8)(s+9)}\right)_{s=0}=(0.3472)(5.7068) \\
& K_{p}=1.9815 \\
& E=\frac{1}{K_{p}+1}=0.3354
\end{aligned}
$$

4) Check your design in VisSim or MATLAB



Problem 5-8)

$$
G(s)=\left(\frac{100(s+6)}{(s-1)(s+5)(s+10)(s+12)}\right)
$$

5) Sketch the root locus of $\mathrm{G}(\mathrm{s})$ including real axis loci, asymptotes, and jw rossing.

Real Axis Loci: $\quad(+1,-5)(-6,-10),(-12$, -infinity $)$
Asymptotes three

$$
\begin{aligned}
& \pm 60^{0}, 180^{0} \\
& \text { Intersect }=\left(\frac{(1-5-10-12)-(-6)}{4-1}\right)=-6.6666
\end{aligned}
$$

Breakaway Points: -2.1358
jw Crossing: j9.0317

6) Determine the feedback gain, k , which results in $20 \%$ overshoot for a step input.

Search along the 0.4559 damping line until the angles add up to 180 degrees


$$
\mathrm{s}=-1.8534+j 3.7067
$$

At this point, make GK $=-1$

$$
\begin{aligned}
& \left(\frac{100(s+6)}{(s-1)(s+5)(s+10)(s+12)}\right)_{s=-1.8534+j 3.7067}=0.2529 \angle 180^{0} \\
& k=\frac{1}{0.2529}=3.9538
\end{aligned}
$$

7) For this value of $k$, determine the closed-loop system's Closed-loop dominant poles

$$
s=-1.8534+j 3.7067
$$

Steady-state error for a step input

$$
\begin{aligned}
& K_{p}=(G K)_{s=0} \\
& K_{p}=\left(\frac{100(s+6)}{(s-1)(s+5)(s+10)(s+12)}\right)_{s=0} \cdot 3.9538 \\
& K_{p}=(-1)(3.9538)=-3.9538 \\
& E_{\text {step }}=\frac{1}{K_{p}+1} \\
& E_{\text {step }}=-0.3386
\end{aligned}
$$

8) Check your design in VisSim or MATLAB


Problem 9-12)

$$
G(s)=\left(\frac{10(s+1+j 3)(s+1-j 3)}{s(s+5)(s+10)}\right)
$$

9) Sketch the root locus of $G(s)$ including real axis loci, asymptotes, and approach angle to the zero at $-1+\mathrm{j} 3$.

Real Axis Loci: $\quad(0,-5),(-10$, -infinity)

Asymptotes: one @ 180 degrees

Breakaway Point

Approach Angle:

$$
\begin{aligned}
& \angle\left(\frac{10(s+1+j 3)(s+1-j 3)}{s(s+5)(s+10)}\right)_{s=-1+j 3+\varepsilon}=180^{0} \\
& \angle\left(\frac{10(s+1+j 3)}{s(s+5)(s+10)}\right)((s+1-j 3))_{s=-1+j 3+\varepsilon}=180^{0} \\
& \left(-73.7398^{0}\right)+\angle(s+1-j 3)=180^{0} \\
& \angle(s+1-j 3)=253.73^{0}=-106.26^{0}
\end{aligned}
$$


10) Determine the feedback gain, k , which results in $20 \%$ overshoot for a step input.

Find the point which has a damping ratio of 0.4559


$$
\mathrm{s}=-1.1977+\mathrm{j} 2.3953
$$

At this point

$$
\begin{aligned}
& G K=-1 \\
& \left(\frac{10(s+1+j 3)(s+1-j 3)}{s(s+5)(s+10)}\right)_{s=-1.1977+j 2.39053}=0.3128 \angle 180^{0} \\
& k=\frac{1}{0.3128} \\
& k=3.1965
\end{aligned}
$$

11) For this value of $k$, determine the closed-loop system's

Closed-loop dominant poles

$$
\mathrm{s}=-1.1977+\mathrm{j} 2.3953
$$

Steady-state error for a step input
None. This is a type- 1 system
12) Check your design in VisSim or MATLAB



